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Non-Technical Summary 

From 2010 to 2015, the RSPB and partners undertook a series of large-scale seabird tracking 

studies across the UK during the late incubation / early chick rearing period of the breeding season 

using cutting-edge GPS tracking technology. For four of the species tracked, there was sufficient 

data coverage to map their UK-wide at sea distributions using habitat selection models. These four 

species were European shag Phalacrocorax aristotelis, black-legged kittiwake Rissa tridactyla, 

common guillemot Uria aalge, and razorbill Alca torda. Habitat selection models were based upon 

all GPS locations and therefore included coverage of all behaviours (e.g. foraging, commuting, 

resting etc.). The current report uses the UK distribution maps of these four species to identify 

important areas of high seabird density at sea, based on hotspot mapping techniques. Two hotspots 

methods were trialled, maximum curvature and Getis-Ord analysis, both of which have previously 

been used to identify seabird hotspots for consideration as potential Marine Protected Areas 

(MPAs). Seabird hotspot maps were generated (i) at the UK-level, based on the distribution of 

seabirds from breeding colonies throughout the entire UK; (ii) at the level of individual SPAs, 

based on the distribution of birds originating from breeding colonies within the boundaries of 

specified Special Protection Areas (SPAs); and (iii) by merging individual SPA-level hotspots 

onto a single, UK-wide map. At the UK-scale, hotspot locations varied across each of the four 

species, but for kittiwakes, guillemots and razorbills, the importance of the Scottish coast 

(particularly the East coast) was apparent. Important hotspots for these species were also found 

around the Pembrokeshire coast (Wales), Rathlin Island (Northern Ireland) and the Yorkshire coast 

(England). In shags, hotspots were smaller than observed in the other three species and were 

typically found in inshore coastal waters centred on the locations of their breeding colonies. 

Further details on the performance and sensitivity of the different hotspot methods are discussed. 



2 
 

 Overall, the report demonstrates how tracking data, distribution modelling and hotspot 

analysis can be combined to identify important seabird areas at sea. This approach has the 

advantage that 1) information on species-habitat relationships is incorporated within hotspot 

analysis; 2) methods for hotspot mapping are transparent and repeatable; 3) mapping can be 

conducted at a variety of spatial scales; 4) the breeding colony provenance of birds is known. As 

such, the outputs from this work will assist the conservation of seabirds when at sea by informing 

the identification of marine protected areas, seabird sensitivity mapping, marine planning, and 

environmental impact assessments. 
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Technical Summary 

From 2010 to 2015, the RSPB along with other partners undertook a series of large-scale telemetry 

studies under the auspices of the FAME (Future of the Atlantic Marine Environment) and STAR 

(Seabird Tracking and Research) projects. These projects used cutting-edge GPS technology to 

track the movement of birds from multiple species across multiple colonies throughout the UK. 

Tracking data were then combined with remotely-sensed environmental data to develop predictive 

species distribution models for four species, (European shags Phalacrocorax aristotelis, black-

legged kittiwakes Rissa tridactyla, common guillemots Uria aalge, and razorbills Alca torda). 

Subsequently, work published by the RSPB used these predictive models, applied to birds breeding 

at individual breeding colonies, to generate UK-wide at sea distribution maps for each species 

(Wakefield et al. 2017). Species distribution models were based upon birds tracked during the late 

incubation / early chick rearing period and therefore reflect the distribution of breeding birds 

during this stage of the annual cycle. In addition, they used all GPS locations and therefore 

included coverage of all behaviours (e.g. foraging, commuting, resting etc.). 

Here, we describe how the species distribution models developed by Wakefield et al. 

(2017) can, in turn, be used to identify and map seabird hotspots at a variety of spatial scales.  In 

particular, we focus upon the application and performance of two methods previously used to 

identify potential seabird marine Special Protection Areas (SPAs), maximum curvature and Getis-

Ord hotspot analysis. Maximum curvature and Getis-Ord analysis were conducted for each species 

listed above at both the UK-level (all colonies within the UK) and the SPA-level (all colonies 

within a defined SPA). The SPA-level hotspots were also merged to create a single UK-wide map 

and compared to alternative basic mapping approaches in which simple foraging radii are drawn 
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around colonies based upon measures such as mean or maximum recorded foraging range (Thaxter 

et al. 2012). 

Outputs from Wakefield et al. (2017) took the form of probability density grids describing 

the expected utilisation distribution (UD) of a given population. UDs are two-dimensional 

probability distributions that represent the time spent in a specific area and thus the probability of 

encountering an animal in that location during a future observation period. Combining individual 

UDs results in a population-level UD that represents the average space use across the population. 

Population-level UDs can be interpreted as the amount of time the average individual spends at a 

particular location or as the expected proportion of the population at a location at any given time. 

Here, population-level UDs derived from species distribution modelling were used as the basis for 

application of maximum curvature and Getis-Ord analysis.  

Maximum curvature boundaries outline the area that best balances the proportion of a 

population protected against the extent of the protected area. Mathematical models were used to 

describe how the cumulative density of birds changes as a function of cumulative area and to 

identify the point of maximum curvature, which is then used as a threshold value of density to 

determine which areas to include within the boundary.  

Getis-Ord analysis quantifies areas in which clusters of density or intensity are statistically 

distinct from patterns in the surrounding landscape. Getis-Ord scores (Gi*) are calculated on a 

cell-by-cell basis across the area of interest taking into consideration data values within a user-

specified local neighbourhood of a focal cell and comparing these to a global value. Gi* are larger 

the higher and more clustered values are around a central location, indicating the potential presence 

of a hotspot. Following previous work, two alternative threshold values were applied to delineate 
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Getis-Ord hotspots: the top 1% and the top 5% of Gi* scores. In addition, we applied a threshold 

based on cells in which Gi* scores exceeded a critical significance threshold (p < 0.01).  

UK-scale hotspot maps for kittiwakes, guillemots and razorbills emphasized the 

importance of Scottish waters for each of these species. In particular, hotspots covered large areas 

along the east coast of Scotland. Outside Scotland, other important sites included areas around the 

Yorkshire Coast, Rathlin Island and the Pembrokeshire coast. In shags, UK-scale hotspot mapping 

identified a series of smaller hotspots typically centred around the locations of shag colonies, 

reflecting the limited foraging range and more localised distribution of this species.  

 Mapping hotspots at the SPA-level allowed us to identify important marine areas for each 

SPA in which the species in question was a designated feature. This demonstrates how the modular 

outputs produced by Wakefield et al. (2017) permit hotspot mapping at a variety of spatial scales 

for bespoke combinations of individual colonies. Merging individual SPA-level outputs onto a 

single UK map resulted in UK-wide map of hotspots that reflected the distribution of designated 

colony SPAs and ensured representation of the marine areas used by the populations from these 

internationally important sites. However, in comparison to a single UK-level hotspot analysis, 

merging SPA-associated hotspots was less efficient in terms of protecting the largest number of 

birds in the smallest area. Similarly, drawing foraging radii around SPA colonies (sensu Thaxter 

et al. 2012) typically encompassed larger areas but was less efficient than the hotspot mapping 

approaches trialled in terms of protecting the largest number of birds in the smallest possible area, 

reflecting the methods lack of specificity in targeting highly used areas.  

Across species, maximum curvature consistently identified the largest hotspots regardless 

of the spatial scale of the analysis and typically covered the majority of a species’ home range. 
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Hotspots based on statistically significant Gi* also covered a relatively large area. In contrast, 

hotspots based on the top 1% of Gi* scores consistently covered the smallest areas and were 

primarily concentrated in inshore waters close to the locations of breeding colonies.  

 Both maximum curvature and Getis-Ord analysis were sensitive to how the area over which 

to perform the analysis (analysis field) was selected. In particular, larger analysis fields gave larger 

hotspots. This sensitivity was especially acute when defining hotspots as the top 5% or top 1% of 

Gi* scores as, by definition, this will result in hotspots that cover 5% or 1% of the analysis field 

respectively. For the final outputs, the analysis field was defined using the 95% home range. The 

95% home range is a widely established concept within ecology and also allows for efficient 

hotspot computation. However, given the importance of analysis field we recommend that the 

analysis field is clearly reported and should be borne in mind when interpreting results from any 

such hotspot analysis. 

 The Getis-Ord Gi* score is calculated as a ratio between the average of a variable within a 

defined radius around a central location (local neighbourhood), and the average of the variable 

across the specified analysis field (global value). Therefore, how one defines the local 

neighbourhood over which local Gi* scores are calculated is also critical. Neighbourhood size was 

initially defined using either spatial variograms or first-passage-time (FPT) analysis. Both methods 

identified similar neighbourhood sizes, and the resulting hotspots maps looked similar. However, 

in certain cases spatial variograms failed to asymptote and could not be used to define 

neighbourhood size. One reason for the failure of spatial variograms may be due to the patchy or 

clumped nature of modelled seabird distributions. From an ecological perspective results based on 

FPT analysis may also be more interpretable as FPT (and hence local neighbourhood size) 

represents the spatial scale at which individuals forage. Thus, we preferred to use FPT-based 
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estimates of neighbourhood size when identifying Getis-Ord hotspots and report FPT-based results 

here. 

 Both maximum curvature and Getis-Ord analysis have previously been used to identify 

important seabird marine areas for consideration as potential SPAs. However, the majority of past 

studies were based on at-sea transect data rather than telemetry data. Here, we demonstrate how 

telemetry data can be processed via species distribution models for use in hotspot mapping. The 

technique has the advantage that 1) information on species-habitat relationships is included within 

the hotspot analysis; 2) hotspot mapping is transparent and repeatable; 3) mapping can be 

conducted at a variety of spatial scales and 4) the breeding colony provenance of birds is known. 

As such, we envision that the outputs from this work will assist the conservation of seabirds when 

at sea by informing the identification of marine protected areas, seabird sensitivity mapping, 

marine planning, and environmental impact assessments.  
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1. Introduction 

Seabirds are among the world’s most endangered avian groups, with nearly half of seabird species 

known or suspected to be in decline (Croxall et al. 2012). Many of the threats seabirds face come 

from an anthropogenic source and include interaction with commercial fisheries (Zydelis et al. 

2013), marine pollution (Wilcox et al. 2015), invasive species (Jones et al. 2008) and climate 

change (Doney et al. 2011). Marine Protected Areas (MPAs) represent an important tool for the 

protection of marine biodiversity, including seabirds (Game at al. 2009, Lascelles et al. 2012).  

However, designation of MPAs typically lags behind the terrestrial equivalent (Perrow et al. 2015) 

despite wide-spread recognition that effective seabird conservation requires protecting important 

at sea areas (Game et al. 2009). 

In order to protect biodiversity and ecosystem health the UK is signatory to several 

international agreements (OSPAR Convention 1992, Convention on Biological Diversity 2004). 

In particular, the European Union (EU) Birds Directive (Directive 2009/147/EC) requires member 

states to create a network of sites, termed Special Protection Areas (SPAs), across both the 

terrestrial and marine environment to protect avian species. In response, the UK along with other 

EU countries, is part of international efforts to establish a European network of protected sites 

called Natura 2000. At present, many seabirds are protected within terrestrial SPAs based around 

the breeding colony (Stroud et al. 2001). In order to identify suitable marine SPAs,  the Joint 

Nature Conservation Committee (JNCC) in collaboration with Scottish Natural 

Heritage (SNH), Natural England (NE), Natural Resources Wales (NRW) and the Department of 

the Environment Northern Ireland (DOENI) have undertaken extensive survey and data collection 

over many years  (for details see: http://jncc.defra.gov.uk/page-4184). To help identify marine 
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SPAs a number of approaches have been adopted through work conducted by the Joint Nature 

Conservation Committee (JNCC): 

 

1) Marine extensions to existing seabird colony SPAs (e.g. McSorely et al. 2006, Wilson et al. 

2009) 

2) Identifying inshore areas used by waterbirds outside the breeding season (e.g. O’Brien et al. 

2012) 

3) Identifying inshore- and offshore areas used by seabirds for foraging and other activities 

throughout the year (e.g. Kober et al. 2010, 2012). 

4) Other types of SPA not covered by the three categories above (e.g. Wilson et al. 2014). 

 

 While several of the sites identified have now been formally classified as marine SPAs, the 

designation process is still ongoing. The focus of the current report is to further inform work under 

point 3) and aid identification of important at sea areas. Such work will be useful within an MPA 

context and will also inform future strategic and project level planning of marine activities and 

developments and help embed the ecosystem approach to decision-making within marine spatial 

planning. To date, potential offshore SPAs for seabirds in the UK have been identified largely 

using at sea transect survey data (Kober et al. 2010, 2012). However, information on seabird 

distributions can also be collected using bird-borne data loggers to track birds while at sea. The 

exact nature of the data collected differs between transect-based versus tracking approaches and 

each has its own pros and cons (Camphuysen et al. 2012, Sansom et al. 2018). However, one 

distinct advantage of tracking data is that the provenance of individuals is known. Such 

information can be valuable when proposing seabird MPAs or identifying areas at most risk from 
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human activities as one can prioritize areas of usage associated with protected colonies (Daunt et 

al. 2006, Wakefield et al. 2011, Camphuysen et al. 2012, Perrow et al. 2015) and apportion the 

impacts of anthropogenic and natural processes to specific colonies (Zydelis et al. 2011, 

Montevecchi et al. 2012). In the absence of such data seabird foraging behaviour is often 

incorporated into Environmental Impact Assessments (EIA) by creating buffers around specific 

colonies using estimates of foraging range (Eastham 2014). However, such an approach was not 

intended to be used in isolation (Thaxter et al. 2012) and rests upon the unrealistic assumption that 

seabirds are uniformly distributed out to some threshold distance from their colonies (Wakefield 

et al. 2017). 

Unfortunately, tracking data is often only available for a subset of seabird colonies, which 

precludes understanding of broad-scale seabird distributions and hinders efforts to design national 

MPA networks. One solution is to construct species distribution models (SDM) that describe the 

distribution of birds at tracked colonies and allow the distribution of birds at untracked colonies to 

be predicted. Such models are growing in popularity in marine ecology and have previously been 

used to describe the distribution of cetaceans (Bailey & Thompson 2009, Becker et al. 2012), seals 

(Jones et al. 2015) and seabirds (Wakefield et al. 2017). Within the UK, predictive SDM has 

already been used to help identify potential marine SPAs (Wilson et al. 2014) (several of which 

have now been formally classified, with more pending) and Special Areas of Conservation (SAC, 

Embling et al. 2013), illustrating the utility of this approach.  

Lack of data represents one of the key barriers to MPA designation and hinders effective 

marine management for seabirds. To help address this, the RSPB and other partners embarked on 

two large-scale projects (FAME: Future of the Atlantic Marine Environment and STAR: Seabird 

Tracking and Research) that involved tracking multiple seabird species across multiple colonies. 
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A key aim of the work was to investigate habitat-use when birds were at sea and identify important 

marine areas to inform marine management, including MPA designation. RSPB used the tracking 

data from the FAME-STAR projects, to construct generalized functional response (GFR) models 

(a type of SDM) to model habitat usage for four UK seabird species (European 

shags Phalacrocorax aristotelis, black-legged kittiwakes Rissa tridactyla, common 

guillemots Uria aalge, and razorbills Alca torda, Wakefield et al. 2017). As well as describing 

patterns of habitat usage across tracked colonies, model outputs were used to predict seabird 

distributions at untracked colonies. Colony-level predictions were then combined and scaled-up to 

produce UK-level outputs, providing unprecedented new information on the distribution of these 

species from the local scale (colony-level) through to the national scale (UK-level). 

Delineating a potential MPA typically involves mapping the distribution of seabirds and 

drawing boundaries around important/ high density areas (O’Brien et al. 2012). Thus, the 

distribution maps produced by Wakefield et al. (2017) represent a valuable tool for MPA 

management and design. To date, a number of different techniques have been used to delineate 

important marine sites using distribution maps (Wilson et al. 2009, Garthe et al. 2012, Embling et 

al. 2013, Perrow et al. 2015). The most common approaches used to delineate the boundaries of 

marine seabird SPAs in the UK are maximum curvature (O’Brien et al. 2012, Lawson et al. 2016) 

and Getis-Ord hotspot analysis (Kober et al. 2010, 2012). Maximum curvature provides a 

mathematical method for identifying the point at which the relationship between the size of a 

putative protected area and the cumulative number of birds it contains changes the most. As such, 

it is thought to identify a boundary that balances the proportion of the population protected against 

the size of the protected area. The Getis-Ord (Gi*, Getis & Ord 1992) statistic is a local indicator 

of spatial association (LISA, Anselin 1995) used to quantify areas in which clusters of density or 
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intensity are statistically distinct from patterns in the surrounding landscape (Sokal et al. 1998, 

Johnston & Ramachandran 2014). Recently, Lascelles et al. (2016) developed an analytical 

technique to use raw tracking data in order to help define Important Bird Areas (IBA). However, 

because the IBA approach outlined relies upon tracking data it cannot be used to generate gap-free 

predictive distributions of seabirds across untracked colonies and hence this approach was not 

adopted here. 

The aim of the current work is to use the predicted seabird distribution maps produced by 

Wakefield et al. (2017) as the basis for identifying important offshore seabird areas using the 

established maximum curvature and Getis-Ord methods. For all four species included in Wakefield 

et al. (2017) (black-legged kittiwakes, common guillemots, razorbills and European shags) we 

compare and contrast the performance of maximum curvature and Getis-Ord analysis at both the 

local- and UK-level. At the local-level, we use the outputs of Wakefield et al. (2017) to identify 

hotspots for birds originating from within the boundaries of existing colony SPAs in which the 

species in question is identified as an SPA feature. We term these local distributions as SPA-level 

distributions. Hotspots methods performed on individual Seabird 2000 sites1 and on birds 

originating from within a given Site of Special Scientific Interest (SSSI-level) are also available 

on request. The rationale for focussing upon the SPA-level is that these populations have already 

been recognised as warranting the highest levels of protection under EU law, therefore to provide 

effective protection both at their colony and at sea, knowledge of the most important at sea areas 

used by those colony SPA populations is critical. Without knowing which marine areas are used 

by those protected colony populations, the default is to assume birds use an area within a buffer 

around the colony defined by a generic foraging range value (e.g. Eastham 2014). However, a 

                                                
1 The seabird colony sites defined and used during the Seabird 2000 census, 1998-2002 (Mitchell et al. 
2004) 
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generic foraging range value does not reflect either the true maximum range or the variation 

between colonies and individuals, and may either miss important areas or include areas that are 

used very little (Soanes et al. 2016).  In contrast, defining the areas known to heavily utilised by 

birds on the basis of species distribution modelling may allow us to draw boundaries around 

important areas of sea smaller than those based on foraging radii and better targeted at high density 

regions. As not all birds are found within SPAs, by also adopting a UK-level approach, we can 

include important areas used by birds that do not originate from within an SPA or that arise as at 

sea aggregations of birds from multiple colonies (both SPA and non-SPA). 

 

2. Methods 

Throughout the following report all analyses are based upon the predicted seabird distributions 

produced by Wakefield et al. (2017), which contains a detailed description of the statistical 

methodology used to generate such predictions (summarised in Appendix, A1 & A2). Briefly, 

Wakefield et al. (2017) used telemetry data in order to model habitat use as a function of 

environmental covariates, intra-specific competition and habitat accessibility for four UK seabird 

species (species listed above) during the breeding season (May-July, 2010-2014). 

2.1. Temporal and behavioural coverage  

It is important to note that the Wakefield et al. (2017) distribution maps, and all the work stemming 

from them described in this report relates only to breeding individuals that were either approaching 

the end of the incubation period or raising small chicks as these species are most amenable to 

tracking work during this period (see Table A1 for the dates during which tracking took place). 

This is also the time when the foraging range of adults is constrained by the need to frequently 
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return to the colony to adequately provision their small chicks. So while the analysis will identify 

areas important during this critical time, it may not reflect areas used during other parts of the 

breeding season or over-winter when birds may roam more widely. The models produced by 

Wakefield et al. (2017) were based all GPS locations recorded while birds were at sea and therefore 

include periods of foraging behaviour, but will also include periods of rafting and commuting and 

any other at sea behaviours. 

2.2. Calculating Utilisation Distributions  

Model coefficients from the best fitting habitat usage models were used to predict usage 

for each breeding colony (based on Seabird 2000 sites (Mitchell et al. 2004)) for each species. Raw 

model predictions provide an estimate of the intensity of tracking locations across an area. Results 

were then converted to an expected probability density grid, often termed a Utilisation Distribution 

(UD, (Fieberg & Kochanny 2005)) by normalizing the intensity of locations (i.e. rescaling them 

so that they sum to one). UDs are two-dimensional probability distributions that represent the time 

spent in a specific area and thus the probability of encountering an animal in that location during 

a future observation period (Hooten et al. 2017). UDs also provide a formal way to quantify home 

ranges (Kie et al. 2010). In practice, home range is derived as a particular probability contour of 

the UD that represents the proportion of time spent by an animal within the contour (Demsar et al. 

2015). For example, the 50% UD is often used to identify the area of core usage and identifies the 

smallest polygon in which an individual would be predicted to spend 50% of it time. Similarly, the 

95% UD contour is a common measure of home range and identifies the smallest polygon in which 

an individual would be predicted to spend 95% of it time. Combining individual UDs results in a 

population-level UD that represents the average space use across the sampled population (in the 

case of Wakefield et al. (2017) the sampled population is breeding adults during late incubation/ 
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early chick rearing), provided a representative sample of individuals has been tracked (Gutowsky 

et al. 2015). Thus, population-level UDs can be interpreted as the amount of time the average 

individual spends at a particular location or as the expected proportion/ percentage of the 

population at a location at any given time. For instance, at any given time we would expect to find 

95% of a defined population within the population-level 95% UD. When multiplied by population 

size estimates, UDs can also be used to depict relative or absolute expected density of birds. 

Wakefield et al. (2017) displays a national-level (UK and Ireland combined) UD for each species. 

However, because the original outputs from Wakefield et al. (2017) are predictions for individual 

colonies they can be combined in a variety of different ways depending on the scale of interest. 

For instance, we could focus on the distribution of birds originating from one colony, two 

neighbouring colonies or from all colonies within a defined region.  

More formally, to use the outputs of Wakefield et al. (2017) to create distribution maps we 

first define a set of individual colonies, set x, whose UD outputs we wish to combine. For example, 

set x would consist of all colonies located within the UK if the goal was to map the distribution of 

birds originating from within the UK. More generally, set x could comprise a list of any colony/ies 

of interest. To convert the UD probability distribution into an estimate of relative density of birds 

per grid cell for a given colony, we applied a conversion factor to the UDs for each Seabird 2000 

site based on the number of Apparently Occupied Nests (AON) or individuals recorded during the 

Seabird 2000 census. For kittiwakes and shags, UDs for each Seabird 2000 site within set x were 

multiplied by two times the number of AONs to give us the number of breeding individuals. For 

guillemots and razorbills the Seabird 2000 census counted number of individuals rather than pairs, 

hence there was no need to multiply counts by two and the number of individuals recorded could 

be used directly. We did not use the traditional conversion factor of 0.67 to determine the number 
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of pairs for guillemots and razorbills due to concerns about its accuracy across different 

populations (Harris et al. 2015). Because all analyses deal with relative density and we report the 

percentage of the population found within defined hotspots rather than absolute numbers, the 

choice of multiplication factor does not change our results. However, if one was interested in 

specifying the predicted number of birds within an area the choice of multiplication factor becomes 

more important.  

Currently, the outputs from Wakefield et al. (2017) do not account for differences in time 

spent at sea among different colonies. Assuming all colonies spend equal amounts of time at sea 

essentially applies an equal weighting to all colonies. For tracked colonies the proportion of time 

at sea varied between colonies (and between individuals), but was not associated with either colony 

size or colony Latitude (Appendix, A3).  Therefore, as the vast majority of colonies were not 

tracked, and we found no significant predictors of proportion of time spent at sea at tracked 

colonies, we assumed that all colonies spent the same amount of time at sea. Maps of relative 

density for each Seabird 2000 site within set x were then overlaid on a single map and the total 

density for each grid cell was summed, giving the total density of birds expected in a given cell 

(see Appendix, A4). This was then normalized so that all grid cells summed to one, resulting in a 

UD that described the distribution of birds from colonies within set x. 

A similar approach was used to map the UD and relative density of birds originating from 

within designated colony SPAs. In this case, the set of colonies x over which operations were 

performed included only (sub) colonies whose location fell within the boundaries of a given colony 

SPA. An example for one SPA colony is provided in Fig. 1; the process can also be repeated for 

all colony SPAs and the outputs merged to provide a UK-scale distribution map based only on 

SPA colonies rather than all Seabird 2000 sites. The boundaries of UK colony SPAs were 
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contained in shapefiles downloaded from the JNCC website (http://jncc.defra.gov.uk/page-1409, 

last updated: 04/12/2017). When calculating SPA-level UDs we restricted our focus to those SPAs 

in which the species in question was listed as a designated feature (note this does not include 

species only listed as part of a seabird assemblage). A list of which species were designated as 

features in which UK SPA was taken from the JNCC website (http://jncc.defra.gov.uk/page-1461, 

date accessed: 01/07/2018, last updated: 01/06/2018). Note that the designation process is ongoing 

and our SPA-level analysis reported here will not reflect any sites designated since 1 June 2018. 

Similarly, as the current analysis is based on Seabird 2000 data, it will not reflect the new census 

data currently being collected as part of the ongoing current seabird census effort 

(http://jncc.defra.gov.uk/page-7413). However, the R code developed as part of the analysis can 

allow all the analyses to be updated as required, resources permitting.   
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Fig. 1. An example of calculating distribution maps at the SPA-level. (a) A density map (birds per 

km2) for kittiwakes originating from within the Flamborough and Bempton Cliffs SPA. Estimates 

of density based only on birds from within the SPA. (b) Utilisation distribution for birds originating 

from the Flamborough and Bempton Cliffs SPA based upon density estimates in 2a. 

 

 

2.3. Delineating hotspot boundaries via maximum curvature 

To identify hotspot boundaries we used the maximum curvature method outlined by O’Brien et al. 

(2012), an approach previously used to identify potential seabird SPAs. Maximum curvature was 

estimated for each species based on UDs constructed as described above. For kittiwakes, 

guillemots and razorbills UDs were calculated at a 1 km2 resolution, whereas for shags resolution 

was 0.5 km2. When performing maximum curvature at the UK-level we based results on birds 

(a) (b) 



19 
 

originating from both the UK and the Republic of Ireland as birds from Irish colonies visit the UK 

EEZ and may aggregate with British birds. At the SPA-level, the UDs used to calculate maximum 

curvature were based only on the distribution of birds originating from colonies within the 

boundaries of a specified SPA. Therefore, SPA-level analysis did not incorporate information on 

the distribution of birds from out-with a given SPA. Maximum curvature analysis was run 

independently for each SPA in turn. However, to display identified maximum curvature areas on 

the UK-scale the maximum curvature boundaries from individual SPAs were overlaid and merged. 

To perform maximum curvature anlaysis, UD grid cells xi were ordered by decreasing 

probability density and we calculated cumulative probability density, ρi, against cumulative area, 

Ai. A was then re-scaled to lie between 0 and 1 to ensure it was on the same scale as ρ. Graphing 

the curve of the relationship between ρi and Ai indicates how predicted usage increases with area 

(Fig. 2). Maximum curvature works by identifying the point, kmax, at which the relationship 

between Ai and ρi changes the most. Beyond kmax disproportionately larger areas would be required 

to encompass further increases in bird numbers. By determining the cumulative area at this point, 

Amax, the set of grid cells at which Ai < Amax can be identified. The maximum curvature boundary 

is then defined as the polygon bounding these grid cells. 
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Fig. 2. Example of identifying point of maximum curvature. (a) Plot of ρ against A, black line 

gives the raw data and the dashed, red line represents the curve fitted to the data by Loess 

smoothing. The blue line indicates Amax, the cumulative area at the point of maximum curvature. 

Cells to the left of this line are selected for inclusion within a maximum curvature boundary and 

those to the right are excluded. (b) Plot displays the curvature of the lines from plot 3a, the clear 

peak in curvature allows kmax and hence Amax to be determined. 

 

One key aspect of maximum curvature analysis is defining the spatial extent over which to 

perform the analysis, termed the analysis field, as this can have a marked effect upon the outcome 

(Webb 2009, Appendix, A5). The analysis field chosen might be all cells in which the density of 

a species was > 0 (O’Brien et al. 2012) or it might be all grid cells within the foraging range of 

birds from a particular breeding colony (Webb 2009). When performing maximum curvature 

(a) 
(b) 
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analysis at the UK-scale, we limited the analysis field to all those cells that satisfied two criteria: 

1) cell must fall within the boundaries of the UK EEZ, 2) cell must fall within the 95% home range 

of at least one UK colony (Fig. 3). Similarly, when performing maximum curvature analysis at the 

SPA-level we restricted our analysis field to the 95% home range of birds originating from the 

SPA-colony in question (e.g. Fig. 1). Therefore, the SPA-level outputs show hotspots within the 

95% home range of the SPA population in question (rather than within the UK EEZ). 

Understanding the spatial extent over which the analysis is performed is crucial to interpretation. 

We chose to focus on the 95% home range due to its long-standing use as measure of home range 

within ecology (Kie et al. 2010). Moreover, use of the 95% home range ensures we do not include 

a large number of low density or zero density cells in the analysis which reduces computing time 

considerably (Kranstauber et al. 2017).  

Typically, the point of maximum curvature is identified using exponential growth models 

(O’Brien et al. 2012). However, Wakefield et al. (2017) found that exponential models often 

performed poorly and occasionally identified two maxima in k with neither corresponding well to 

the point of maximum curvature observed when plotting A vs. ρ. As a consequence, Wakefield et 

al. (2017) used a Loess smoothing approach (Loader 1999) as the means of estimating kmax. As we 

encountered the same problems with maximum curvature as those reported by Wakefield et al. 

(2017) we adopted the same approach. Loess smoothing is a highly flexible method of 

approximating non-linear responses using a local regression model, 

                                                            iii A   )( ,                                 

where )( iA  is a polynomial fitted in a sliding window. This model was fit and its first and second 

derivatives obtained using the R locfit package (Loader 2013). The degree of loess smoothing is 

(1) 
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determined by the bandwidth, h, which ranges from 0 to 1 and determines how much of the data 

is used to fit each local polynomial. Exploratory analysis showed that the location of kmax and 

therefore the size of Amax were both sensitive to h. A value of h = 0.001 provided curves which 

approximated the data well (Fig. 2a) in a reasonable computing time (Wakefield et al. 2017). 

Decreasing h below this value resulted in little change in Amax but resulted in a prohibitive demand 

for computing power. Hence, h = 0.001 was used in all analyses. 

2.4. Delineating hotspot boundaries via Getis-Ord analysis 

Like maximum curvature, Getis-Ord analysis has previously been used to identify potential seabird 

MPAs (Kober et al. 2010, 2012). Getis-Ord, Gi* analysis works by looking at the value of the 

response variable in a given cell in the context of its neighbour’s values and measures the intensity 

of clustering of high or low values in a cell relative to its neighbouring cells. The sum for a cell 

and its neighbours (local value) is then compared proportionally to the sum of all cells (global 

value). To be classified as a hotspot, a cell will have a high value and be surrounded by other cells 

with high values. Cold spots can also be discovered using Gi* though this is not pursued here. The 

formula for the Getis-Ord, Gi* statistic is:  

𝐺𝑖
∗(𝑑) =

∑ 𝑤𝑖,𝑗(𝑑) 𝑁
𝑗=1 𝑥𝑗

∑ 𝑥𝑗
𝑛
𝑗=1

 

Where w i,j denotes a spatial weights matrix with elements i, j where:  

𝑤𝑖,𝑗 (𝑑) =  {
 1,
 0,

  
𝑖𝑓 𝑑𝑖,𝑗 < 𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

The numerator in (2) gives the local sum of the variable x within a circle of given radius (d) from 

the base point of region i. The denominator in (2) gives the total sum of variable x across the entire 

(2) 

(3) 
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region. In most statistical packages Gi* scores are automatically standardized and the resulting 

Gi* value reported is a standard normal deviate, equivalent to a z-score.  

 Getis-Ord analysis was conducted for each species at both the UK- and SPA-level in the R 

environment (R version 3.5.0, R Development Core Team 2018) via the usdm package (Naimi et 

al. 2014) using maps of the relative density of birds as the response variable (Appendix A4). Two 

key considerations when conducting Getis-Ord analysis are 1) Defining the analysis field over 

which to calculate Getis-Ord values and, 2) Defining d, the scale of the local neighbourhood over 

which to calculate local values. As with maximum curvature, Getis-Ord analysis is sensitive to the 

spatial extent over which the analysis is conducted (Appendix, A5). Therefore, at the UK-level we 

limited the analysis field to cells that fell within the boundaries of the UK EEZ and fell within the 

95% home range at least one UK colony (Fig. 3b). This approach makes results comparable with 

those based on maximum curvature and prevents inclusion of cells in which the density of birds is 

extremely low, which speeds up computation time and prevents inclusion of large, low density 

areas. Similarly, at the SPA-level we restricted our analysis field to the 95% home range of birds 

originating from the SPA-colony in question. Hotspot analysis was run independently for each 

SPA colony in turn. However, to display identified SPA-level hotspots on the UK-scale the results 

from individual SPAs were overlaid and merged.  

In many ecological applications the local neighbourhood of a cell is defined using a 

distance-based threshold, d. A cells neighbourhood is defined as all the cells within a given radius 

d from the centre of cell x. A larger radius will result in a greater smoothing of Gi* scores and 

larger hotspots (Nelson & Boots 2008), but fine-scale spatial patterns may be lost if over-

smoothing occurs (Appendix, A6). Conversely, a small radius may reflect small-scale patterns 

well, but may not reflect the scale at which a particular species aggregates and hotspots may be 
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smaller than ideal.  Many studies choose a value of d by estimating the distance at which spatial 

auto-correlation breaks down in the data and setting this as the value of d (Fischer & Getis 2009, 

Kober et al. 2012). However, when conducting hotspot analyses at the SPA-level spatial 

variograms failed to reach an asymptote at certain colonies, suggesting the variogram approach 

may not always be suitable. When tracking seabirds, an alternative approach might be to define d 

based on the characteristics and movement ecology of the species in question. One advantage to 

this approach is that Gi* scores could be estimated using a consistent value across populations. To 

do this, we performed a First-Passage Time (FPT) analysis, a standard analysis that uses data from 

tracked birds to identify zones of area restricted search (ARS) and determines the spatial scale at 

which individuals interact with the environment (Fauchald & Tveraa 2003, Suryan et al. 2006, 

Hamer et al. 2009, Lascelles et al. 2016, Appendix A7). The scale of ARS was determined across 

all trips recorded within a species during the study. To determine the value of d, the average scale 

of ARS for a species was estimated as the intercept from an intercept-only model of ARS scale in 

which colony identity and individual identity were included as random effects to control for 

potential pseudo-replication. Ultimately, this gave species-level d as: d = 10 km for kittiwakes, d 

= 9 km for guillemots, d = 7 km for razorbills and d = 4 km for shags. We subsequently used these 

FPT derived neighbourhood sizes when performing Getis-Ord analysis in the current report. A 

comparison of Gi* analysis conducted using FPT-based or spatial variogram-based neighbourhood 

sizes can be found in the appendix (A8), however, results were broadly similar between these 

methods. 

In order to delineate seabird hotspots using Gi* scores we defined hotspots in three ways. 

Following, Kober et al. (2010) two different threshold values were used to define hotspots: 1) All 

cells within the top 5% of calculated Gi* scores and 2) all cells within the top 1% of calculated 
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Gi* scores. Polygons drawn around cells that satisfy these criteria provide the boundaries of 

hotspots. By choosing to select the top 1% or top 5% of cells on the basis of Gi* scores one also 

makes the implicit decision to select 1% or 5% of the analysis field for protection (essentially 

setting a target % area). 3) We exploited the fact that standardized Gi* scores are equivalent to z-

values and can be used for statistical testing to determine whether a cell belongs to a hotspot or 

not with a given degree of significance. The naive use of z scores is problematic due to multiple 

statistical testing, particularly when assessing hotspots for species with large ranges. To address 

these problems, we calculated adjusted p values (p. adj) using false discovery rate (FDR) methods 

to control the error rate under multiple testing (Benjamini & Yekutieli 2001). FDR methods 

increase the threshold z-value required for a given level of statistical significance, reducing the 

Type-1 error rate. One caveat to the use of standardized Gi* scores for statistical testing is that 

typically the response variable being modelled is non-normal, thus standardized Gi* scores will 

also tend to be non-normal. However, using a conditional randomization approach Getis and Ord 

(1992) showed that Gi* scores are asymptotically normal provided a cell has at least eight 

neighbours (see also: Ord & Getis 1995; Nelson &Boots 2008). The neighbourhood sizes in the 

current work ensure that every cell has ≥8 neighbours. Here, we define cells as belonging to a 

hotspot if the probability of that cell belonging to a hotspot is p. adj <0.01. Drawing a boundary 

around cells that meet this criteria provides an alternate way to delineate a hotspot using Gi* scores 

that is based on statistical significance. 

2.5. Assessing the performance of different hotspot delineation methods 

To assess the performance of different hotspot delineation methods we compared the hotspots 

identified on the basis of: (i) hotspot area; (ii) hotspot area as a percentage of the total area of the 

analysis field used in the UK-level analysis (Fig. 3.); and (iii) the percentage of the reference 
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population contained within the hotspot area at a given time relative to total population size. In 

addition, we used the Jaccard Index of similarity (Intersection over Union, Jaccard 1912) to (iv) 

compare polygon boundaries of identified hotspots with different UD polygons.  The Jaccard Index 

(J) was calculated as 

𝐽 (𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

Where A ∩ B represents the area of the polygon formed by the intersection on polygons A 

and B and A ∪ B represents the area encompassed by the union of A and B. Thus the index 

represents the ratio of intersection and union areas and is scored from 0 to 1 with higher values 

denoting greater similarity. For each study population, the Jaccard Index was calculated based 

upon a comparison between the hotspots identified and a sequence of population-level UD 

contours ranging from the 5% UD to the 95% UD in 5% increments. We then identified for each 

hotspot method the corresponding % UD contour that it was most similar to (highest Jaccard 

similarity). 

In addition, we (v) compared the size and location of hotspots identified at the SPA-level 

via maximum curvature and Getis-Ord analysis to areas identified using seabird foraging ranges 

to draw a foraging radius around a colony. Currently, the use of foraging radii is one method to 

ascertain the impact of marine renewables on seabird populations, particularly when detailed 

tracking data are unavailable (Thaxter et al. 2012). To create foraging radii around colonies we 

constructed buffers around each SPA colony using the mean foraging range, mean-maximum 

foraging range, mean-maximum foraging range + 1 standard deviation (SD) and the maximum 

foraging range using species-specific values reported in Thaxter et al. (2012). We use values taken 

from Thaxter et al. (2012) here as such values are commonly used to assess species foraging ranges 

(4) 
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in the absence of tracking data (Eastham 2014). Foraging radii buffers for individual SPA colonies 

were then merged in order to plot UK-scale results. The area and expected proportion of the colony 

population contained within foraging radii were calculated and compared with similar values for 

SPA-level hotspots. The similarity between different hotspot methods and different foraging radii 

was assessed using the Jaccard Similarity Index.  
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Fig. 3. (a) Map displaying utilisation distribution for birds originating from the UK and the 

Republic of Ireland. At the UK-level maximum curvature and Getis-Ord analysis were based on 

the density estimates of birds originating from both the UK and Ireland. (b) To be included in UK-

level analysis field a given grid cell had to fall within the UK EEZ and fall within the 95% home 

range of at least one UK-based colony. Cells selected for UK-level hotspot mapping (UK-level 

analysis field) are shown in green. 

(a) (b) 

Black-legged kittiwakes 
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3. Results  

3.1. Black-legged kittiwakes 

3.1.1. UK-Level 

At the UK-level, the top 1% and top 5 % Gi* methods emphasized the importance of areas along 

the entire east coast of Scotland and off the coast of Yorkshire (Fig. 4), where some of the largest 

kittiwake colonies are located. The larger areas identified by statistically significant Gi* values or 

maximum curvature also covered these regions, but included additional areas around the coast of 

Shetland, the Hebrides, Northern Ireland and North-East England. 

Hotspots identified by loess-based maximum curvature encompassed the largest area 

(Table 1) and were most similar to the 85% UD contour of UK kittiwakes (J = 0.93). Defining 

hotspots as those cells within the top 1% or top 5% of Gi* scores gave smaller areas than hotspots 

defined on the basis of statistical testing (Table 1). When delineating hotspots as the top 1% of Gi* 

scores the area identified was most similar to the 20% UD of UK kittiwakes (J = 0.45). When using 

the top 5% of Gi* scores to delineate hotspots the area identified was most similar to the 40% UD 

of UK kittiwakes (J = 0.74). Finally, when delineating hotspots on the basis of statistical significant 

Gi* scores the areas identified was most similar to the 80% UD of UK kittiwakes (J = 0.86). The 

larger areas identified by maximum curvature or statistically significant Gi* scores contained high 

numbers of birds (> 70% of the at sea population at a given time), but even the smallest area, 

defined using the top 1% of Gi* scores, was expected to contain >10% of the at sea population at 

any given time. 

3.1.2. SPA-level  
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To display SPA-level outputs on the UK-scale outputs from each of the SPA-level analyses were 

merged onto a single map (Fig. 5). Merging the outputs of SPA-level analyses resulted in larger 

hotspot areas than performing a single UK-wide analysis (in which all UK colonies were included), 

with a slight decline in the number of kittiwakes included (Table 1). Overall, the importance of the 

east coast of Scotland and the Yorkshire coast is apparent. However, the importance of areas 

around the coast of Shetland and the Hebrides is emphasized when looking at merged SPA-level 

hotspots relative to UK-wide analysis, reflecting the fact that a number of SPA-colonies are found 

within these regions.  

As with the UK-level analysis, the size of the areas identified varied in a consistent manner 

between the different methods used. Hotspots based on the top 1% of Gi* scores provided hotspots 

with the smallest area, while hotspots based on statistically significant Gi* scores were bigger (Fig. 

5, 6, Table 1). Areas delineated by maximum curvature provided the largest hotspot area for every 

single SPA colony, and covered the largest area when all SPA maximum curvature hotspots were 

merged. As expected, the area of hotspots defined as the top 1% or top 5% of Gi* scores covered 

1% or 5% of the analysis field for each SPA colony (NB: analysis field was the 95% home range 

of the SPA in question). When using statistically significant Gi* values to determine hotspots the 

% area contained within identified hotspots had a median of 18.26% across SPA colonies (range: 

9.67% - 31.17%). Similarly, if using maximum curvature the % area contained within identified 

hotspots had a median of 26.75% (range: 15.33% - 43.37%).  

 The % of the at sea population contained within a defined hotspot at any given time varied 

between colonies and between methods (Fig. 6). In general, areas defined by maximum curvature 

ensured that a large percentage of the at sea population was covered at any given time (median = 

77.32%, range: 72.30% - 80.26%, Fig. 6). At the other extreme, areas defined by the top 1% of 
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Gi* scores gave the lowest % coverage of the at sea population (median = 15.18%, range: 2.78% 

- 33.83%). In addition, when using the top 1% or top 5% Gi* to delineate hotspots population 

coverage is less consistent across SPA colonies than seen when using maximum curvature or 

statistically significant Gi* scores. 

Placing buffers around SPA colonies on the basis of foraging range estimates taken from 

Thaxter et al (2012) resulted in boundaries covering large areas (Fig. 5d, Table 2). Despite covering 

large areas, boundaries based upon foraging radii were less efficient in terms of protecting as many 

birds as possible per unit area. For example, creating buffers based on maximum foraging range 

from SPA colonies and merging outputs covered an area of 302, 934 km2 and was estimated to 

contain 77.11% of the at sea population at any given time. However, merging maximum curvature 

boundaries for kittiwake SPAs covered an area of 219,285 km2 (27% smaller) and was still 

predicted to contain an estimated 74.89 % of the at sea population.  
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Fig. 4. Maps displaying hotspots identified at the UK-scale for black-legged kittiwakes using a) Getis-Ord hotspot analysis with a neighbourhood 

size of d = 10 km based on FPT analysis and b) maximum curvature. UK EEZ also displayed.  

 (a) (b) 
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Table 1. Summary of the area and percentage of black-legged kittiwakes contained within different hotspots identified at the UK-scale. Hotspots were identified 

either by performing a single UK-level analysis or by conducting hotspot analysis at SPAs in which kittiwakes were listed as a feature and then merging the outputs 

from each SPA into a single map (SPA-level hotspots merged).   UK analysis field comprises all cells within the UK EEZ and within the 95% home range of at 

least one UK colony (see Fig. 4).  The % of at sea population within the hotspot at any given time refers to the entire UK and Ireland populations. % change 

between UK-level and SPA-level values calculated as ((V2 – V1) / V1) × 100. V1 = UK-level value, V2 =   SPA-level value.  For Gi* hotspot data presented d = 10 

km.

Analysis Area of hotspots 

identified 

Hotspot area 

as % of UK 

analysis field 

% of at sea 

population 

within hotspot 

 Area of hotspots identified Hotspot area 

as % of UK 

analysis field 

% of  at sea 

population 

within hotspot 

% change UK-level vs. merged 

SPA-level hotspots 

UK-level     SPA-level hotspots merged    

Top 1% Gi* 

hotspot 

5, 852 km2 1% 11.67%  14, 039 km2 2.40% 10.66% Area: 140 % increase 

No. Birds: 9 % decrease 

Top 5% Gi* 

hotspot 

29, 256 km2 5% 35.78%  59, 972 km2 10.25% 32.67% Area: 105 % increase 

No. Birds: 9 % decrease 

Statistically 

significant 

Gi* hotspot 

122, 623 km2 20.94% 74.08%  167, 098 km2 28.55% 67.92% Area: 36 % increase 

No. Birds: 8 % decrease 

Maximum 

curvature 

157, 802 km2 26.95% 80.38%  219, 285 km2 37.47% 74.89% Area: 39 % increase 

No. Birds: 7 % decrease 
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Fig. 5. Maps displaying hotspots identified at the SPA-level for two example black-legged kittiwake SPA: 

a) Fowlsheugh SPA and b) Troup Head, Pennan and Lion’s Heads SPA. c) Map displaying hotspots for all 

kittiwake SPA colonies throughout the UK. d) Map displaying kittiwake foraging ranges taken from 

Thaxter et al. (2012). For Gi* hotspots d = 10 km. 

(a) 

(c) 

(b) 

(d) 
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Fig. 6. Box and whisker plots showing a) area and b) % of SPA at sea population within hotspots identified 

using maximum curvature and Getis-Ord analysis (d = 10 km) at each SPA colony across the UK in which 

black-legged kittiwakes were listed as a feature. Box plots show the distribution of hotspot area and % at 

sea population included within a hotspot across each SPA colony included the analysis (n = 30 SPA colonies 

for kittiwakes). The solid line represents the median and the edges of the box show the upper and lower 

quartiles. Whiskers extend to the highest and lowest data extremes excluding outliers.  

  

   

(a) (b) 
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Table 2. The areas and % at sea population (UK and Republic of Ireland) contained within 

boundaries around UK black-legged kittiwake SPA colonies based upon foraging range (Fig. 5d). 

Based on foraging range data from Thaxter et al. (2012). Table also identifies which hotspot 

method (Fig. 5c) each foraging radius method shares the greatest similarity with. 

Foraging Radius Area within boundary % of at sea 

population 

Which hotspot most similar 

to 

Mean foraging range 48, 013 km2 29 % Top 5% Gi* hotspot, J = 0.50 

Mean-Maximum foraging range 156, 971 km2 60  % Stat. Sig. Gi* hotspot, J = 0.65 

Mean-Maximum foraging range + 1 SD 212, 054 km2 69 % Max. Curv. hotspot, J = 0.69 

Maximum foraging range 302, 934 km2 77 % Max. Curv, hotspot, J = 0.63 

 

3.2. Common guillemots 

3.2.1. UK-level 

At the UK-level, the top 1% and top 5 % Gi* methods emphasized the importance of areas along 

the entire east coast of Scotland (Fig. 7). Using these methods, other hotspots were also evident 

around some of the larger UK colonies, e.g. Flamborough Head, Yorkshire or Rathlin Island, 

Northern Ireland. The larger areas identified by statistically significant Gi* values or maximum 

curvature covered these regions as well, but also encompassed almost the entirety of Scottish 

inshore waters. In addition, guillemot hotspots in the Irish Sea were identified, including areas off 

the Pembrokeshire coast and Anglesey when using either maximum curvature or statistically 

significant Gi* values to delineate hotspots. 

Hotspots identified by loess-based maximum curvature encompassed the largest area 

(Table 3) and were most similar to the 80% UD contour of UK guillemots (J = 0.86). Defining 
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hotspots as those cells within the top 1% or top 5% of Gi* scores gave smaller areas than 

hotspots defined on the basis of statistical testing (Table 3). When defining hotspots as the top 

1% of Gi* scores the area identified was most similar to the 15% UD of UK guillemots (J = 

0.63). Similarly, when using the top 5% of Gi* scores the area identified was most similar to 

the 35% UD of UK guillemots (J = 0.78). Finally, when defining hotspots on the basis of 

statistical significant Gi* scores the area identified was most similar to the 70% UD of UK 

guillemots (J = 0.87). The larger areas identified by maximum curvature or statistically 

significant Gi* scores contained high numbers of birds (> 70% of the at sea population at any 

given time), but even the smallest area, defined using the top 1% of Gi* scores, was expected 

to contain >10% of the at sea population at any given time. 

3.2.2. SPA-level  

Merging the outputs of SPA-level analyses to the UK scale resulted in larger hotspots than 

performing a single UK-level analysis and an increase in the number of birds captured (Table 3). 

However, the % increase in the area covered exceeded the % increase in usage by birds in all cases. 

Overall, the importance of Scottish coastal waters and areas around Rathlin Island, Northern 

Ireland are apparent. However, the importance of areas such as the Yorkshire or Welsh coasts was 

reduced despite their importance at the UK-scale due to location of common guillemot colony 

SPAs (two in North-East England and none in Wales). 

At the SPA-level, hotspots based on the top 1% of Gi* scores provided hotspots with the 

smallest area, while hotspots based on statistically significant Gi* scores were larger (Fig. 8, 9, 

Table 3). Areas delineated by maximum curvature provided the largest hotspot area for every 

single SPA colony, and the largest area when all SPA hotspots were merged onto a single map. 
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The area of hotspots defined as the top 1% or top 5% of Gi* scores covered, by definition, 1% or 

5% of the analysis field across individual SPA colonies. When using statistically significant Gi* 

values to determine hotspots the % of the analysis field contained within identified hotspots had a 

median of 15 % across SPA colonies (range: 7 % - 25 %). Similarly, if using maximum curvature 

the % area contained within identified hotspots had a median of 25 % (range: 18 % - 47 %).  The 

% of the at sea population contained within a given boundary at any given time varied between 

colonies and between methods. In general, areas defined by maximum curvature ensured that a 

large percentage of the at sea population was covered (median = 78 %, range: 69 % - 80 %, Fig. 

9). At the other extreme, areas defined by the top 1% of Gi* scores gave the lowest % coverage of 

the at sea population (median = 18 %, range: 5 % - 36 %).  

Placing buffers around SPA colonies on the basis of foraging range estimates taken from 

Thaxter et al (2012) resulted in boundaries covering large areas (Table 4). In particular, boundaries 

based on the Mean-Maximum or Maximum observed foraging range resulted in areas much larger 

than those identified by any of the hotspot methods used. The spatial similarity between different 

foraging range buffers and the most similar hotspot method is listed in Table 4. 
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Fig. 7. Maps displaying hotspots identified at the UK-level for common guillemots using a) Getis-Ord hotspot analysis with a neighbourhood size 

of d = 9 km based on FPT analysis and b) maximum curvature. UK EEZ also displayed.  

 
(a) (b) 
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Table 3. Summary of the area and percentage of common guillemots contained within different hotspots identified at the UK-scale. Hotspots were identified either 

by performing a single UK-level analysis or by conducting hotspot analysis at SPAs in which guillemots were listed as a feature and then merging the outputs from 

each SPA into a single map (SPA-level hotspots merged).   UK analysis field comprises all cells within the UK EEZ and within the 95% home range of at least 

one UK colony (see Fig. 4).  The % of at sea population within the hotspot refers to the UK and Ireland populations. % change between UK-level and SPA-level 

values calculated as ((V2 – V1) / V1) × 100. V1 = UK-level value, V2 =   SPA-level value. For Gi* hotspot data presented d = 9 km.

Analysis Area of hotspots 

identified 

Hotspot area 

as % of UK 

analysis field 

% of at sea 

population 

within hotspot 

 Area of hotspots identified Hotspot area 

as % of UK 

analysis field 

% of  at sea 

population 

within hotspot 

% change UK-level vs. merged 

SPA-level hotspots 

UK-level     SPA-level hotspots merged    

Top 1% Gi* 

hotspot 

2, 933 km2 1% 10.50 %  7, 831 km2 2.67% 16.33% Area: 167 % increase 

No. Birds: 56% increase 

Top 5% Gi* 

hotspot 

14, 663 km2 5% 33.54%  35, 653 km2 12.15% 44.86% Area: 143 % increase 

No. Birds: 34% increase 

Statistically 

significant 

Gi* hotspot 

62, 648 km2 21.34% 71.12%  95, 480 km2 32.53% 78.14% Area: 52 % increase 

No. Birds: 10 % increase 

Maximum 

curvature 

95, 093 km2 32.40% 83.12%  131, 858 km2 44.92% 86.24% Area: 39 % increase 

No. Birds: 4 % increase 
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Fig. 8. Maps displaying hotspots identified at the SPA-level for two example common guillemot SPA: a) 

Rathlin Island SPA and b) St Abb’s Head to Fast Castle SPA. c) Map displaying hotpots for all guillemot 

SPA colonies throughout the UK. d) Map displaying guillemot foraging ranges taken from Thaxter et al. 

(2012). For Gi* hotspots d = 9 km. 

 

 

 

 

 

 

(b) 

(c) (d) 

(a) 
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Fig. 9. Box and whisker plots showing a) area and b) % of SPA at sea population within hotspots 

identified using maximum curvature and Getis-Ord analysis at each SPA colony across the UK in 

which guillemots were listed as a feature. Box plots show the distribution of hotspot area and % at 

sea population included within a hotspot across each SPA colony included the analysis (n = 33 

SPA colonies for guillemots). The solid line represents the median and the edges of the box show 

the upper and lower quartiles. Whiskers extend to the highest and lowest data extremes excluding 

outliers.  

 

  

(a) (b) 
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Table 4. The areas and % at sea population (UK and Republic of Ireland) contained within buffers 

around UK guillemot SPA colonies at any given time based upon foraging range (Fig. 8d). 

Foraging range data from Thaxter et al. (2012). Table also identifies which hotspot method (Fig. 

8c) each foraging radius method shares the greatest similarity with. 

Foraging Radius Area within boundary % of at sea 

population 

Which hotspot most similar 

to 

Mean foraging range 92, 678 km2 64 % Stat. Sig. Gi* hotspot, J = 0.63 

Mean-Maximum foraging range 207, 991 km2 79 % Max. Curv.  hotspot, J = 0.61 

Mean-Maximum foraging range + 1 SD 316, 450 km2 84% Max. Curv. hotspot, J = 0.41 

Maximum foraging range 318, 005 km2 84% Max. Curv, hotspot, J = 0.41 
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3.3. Razorbill 

3.3.1. UK-level 

At the UK-level, the top 1% and top 5 % Gi* methods emphasized the importance of a variety of 

areas across the UK. Multiple hotspots were identified along the east coast of Scotland and the 

Orkney Islands as well as hotspots in the Hebrides and around Foula, Shetland (Fig. 10). Outside 

of Scotland the top 1% and top 5% Gi* methods also identified hotspots along the Northern Irish 

coast, around the Yorkshire coast in England and around the Pembrokeshire coast in Wales. The 

larger areas identified by statistically significant Gi* values or maximum curvature covered these 

regions as well. 

Hotspots identified by loess-based maximum curvature encompassed the largest area 

(Table 5) and were most similar to the 80% UD of UK razorbills (J = 0.86). Defining hotspots as 

those cells within the top 1% or top 5% of Gi* scores gave smaller areas than hotspots defined on 

the basis of statistical testing (Table 5). When defining hotspots as the top 1% of Gi* scores the 

area identified was most similar to the 20% UD of UK razorbills (J = 0.62). Similarly, when using 

the top 5% of Gi* scores the area identified was most similar to the 40% UD of UK razorbills (J = 

0.74). Finally, when defining hotspots on the basis of statistical significant Gi* scores the areas 

identified was most similar to the 60% UD of UK razorbills (J = 0.83). The larger areas identified 

by maximum curvature or statistically significant Gi* scores contained high numbers of birds (> 

60% of the at sea population at any given time), but even the smallest area, defined using the top 

1% of Gi* scores, was expected to contain >10% of the at sea population at any given time. 
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3.3.2. SPA-level  

Merging the outputs of SPA-level analyses to the UK scale resulted in larger hotspots than 

performing a single UK-wide analysis and resulted in an increase in the number of birds captured 

(Table 5). However, the % increase in the area covered exceeded the % increase in usage by birds 

in all cases. At the SPA-level, the importance of Scottish coastal waters and areas around Rathlin 

Island, Northern Ireland are apparent. However, the importance of areas such as the Yorkshire or 

the Welsh coast is less well reflected despite their importance at the UK-scale due to location of 

razorbill SPAs. Currently, there are no SPAs in which razorbills are designated as a feature in 

Wales (although they form part of a seabird assemblage at the Skomer, Skokholm and seas off 

Pembrokeshire SPA). Similarly, razorbills were not a designated feature in any English SPAs at 

the time of the analysis2. 

At the SPA-level, hotspots based on the top 1% of Gi* scores provided hotspots with the 

smallest area (Fig. 11). Unlike the previously examined species (kittiwakes and guillemots) there 

was often little difference between the areas of hotspots based on the top 5% Gi* scores or 

statistically significant Gi* scores at the level of individual SPA colonies (Fig. 12). Indeed, for 

certain SPA colonies hotspots based on the top 5% Gi* scores were actually larger than those based 

on statistical significance. Areas delineated by maximum curvature provided the largest hotspot 

area for every single SPA colony, as well as the largest area when all SPA hotspots were merged 

onto a single map. When using statistically significant Gi* values to determine hotspots the % of 

the analysis field contained within identified hotspots had a median of 7 % across SPA colonies 

(range: 5 % - 36 %). Similarly, if using maximum curvature the % area of the analysis field covered 

                                                
2 Note that razorbills have since been listed as feature in the new Flamborough and Filey Coast SPA which 

represents an extension to the existing Flamborough and Bempton Cliffs SPA. 
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by identified hotspots had a median of 20 % (range: 17 % - 53 %). In general, areas defined by 

maximum curvature ensured that a large percentage of the at sea population was covered at any 

one time (median = 78 %, range: 69 % - 80 %, Fig. 12). At the other extreme, areas defined by the 

top 1% of Gi* scores gave the lowest % coverage of the at sea population, although always 

included more than 1% of the population (median = 33 %, range: 3 % - 48 %).  

Placing buffers around SPA colonies on the basis of foraging range estimates taken from 

Thaxter et al (2012) resulted in boundaries covering large areas (Table 5). In particular boundaries 

created around colonies using the maximum observed foraging range covered areas that were 

larger even than those identified using maximum curvature at the SPA-level. The spatial similarity 

between different foraging range buffers and the most similar hotspot method is listed in Table 6. 
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Fig. 10. Maps displaying hotspots identified at the UK-level for razorbills using a) Getis-Ord hotspot analysis with a neighbourhood size of d = 7 

km based on FPT analysis and b) maximum curvature. UK EEZ also displayed.  

 (a) (b) 
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Table 5. Summary of the area and percentage of razorbills contained within different hotspots identified at the UK-scale. Hotspots were identified either by 

performing a single UK-level analysis or by conducting hotspot analysis at SPAs in which razorbills were listed as a feature and then merging the outputs from 

each SPA into a single map (SPA-level hotspots merged).   UK analysis field comprises all cells within the UK EEZ and within the 95% home range of at least 

one UK colony (see Fig. 4).  The % of at sea population within the hotspot refers to the UK and Ireland populations. % change between UK-level and SPA-level 

values calculated as ((V2 – V1) / V1) × 100. V1 = UK-level value, V2 =   SPA-level value. For Gi* hotspot data presented d = 7 km.

Analysis Area of hotspots 

identified 

Hotspot area 

as % of UK 

analysis field 

% of at sea 

population 

within hotspot 

 Area of hotspots identified Hotspot area 

as % of UK 

analysis field 

% of  at sea 

population 

within hotspot 

% change UK-level vs. merged 

SPA-level hotspots 

UK-level     SPA-level hotspots merged    

Top 1% Gi* 

hotspot 

3, 570 km2 1% 18.23 %  10, 934 km2 3.06% 22.33% Area: 206 % increase 

No. Birds: 21% increase 

Top 5% Gi* 

hotspot 

17, 848 km2 5% 39.17%  49, 700 km2 13.91% 48.05% Area: 178 % increase 

No. Birds: 23 % increase 

Statistically 

significant 

Gi* hotspot 

46, 999 km2 13.16% 59.53%  101, 963 km2 28.54% 65.73% Area: 117 % increase 

No. Birds: 10 % increase 

Maximum 

curvature 

108, 515 km2 30.37% 80.52%  180, 948 km2 50.65% 86.96% Area: 67 % increase 

No. Birds: 8 % increase 
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Fig. 11. Maps displaying hotspots identified at the SPA-level for two example razorbill SPA: a) Rathlin 

Island SPA and b) Mingulay and Berneray SPA. c) Map displaying hotpots for all razorbill SPA colonies 

throughout the UK. d) Map displaying razorbill foraging ranges taken from Thaxter et al. (2012). For Gi* 

hotspots d = 7 km. 

 

 

  

(a) (b) 

(c) (d) 
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Fig. 12. Box and whisker plots showing a) area and b) % of SPA at sea population within hotspots 

identified using maximum curvature and Getis-Ord analysis at each SPA colony across the UK in 

which razorbills were listed as a feature. Box plots show the distribution of hotspot area and % at 

sea population included within a hotspot across each SPA colony included the analysis (n = 17 

SPA colonies for razorbills). The solid line represents the median and the edges of the box show 

the upper and lower quartiles. Whiskers extend to the highest and lowest data extremes excluding 

outliers.  

 

  

(a) (b) 



53 
 

Table 6. The areas and % at sea population (UK and Republic of Ireland) contained within 

boundaries around UK razorbill SPA colonies based upon foraging range (Fig. 11d). Foraging 

range data from Thaxter et al. (2012). Table also identifies which hotspot method (Fig. 11c) each 

foraging radius method shares the greatest similarity with. 

Foraging Radius Area within boundary % of at sea 

population 

Which hotspot most similar 

to 

Mean foraging range 29, 743 km2 29 % Top 5 Gi* hotspot, J = 0.49 

Mean-Maximum foraging range 91, 520 km2 51 % Max. Curv.  hotspot, J = 0.51 

Mean-Maximum foraging range + 1 SD 169, 371 km2 69% Max. Curv. hotspot, J = 0.71 

Maximum foraging range 193, 665 km2 72% Max. Curv, hotspot, J = 0.71 
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3.4. European shags 

3.4.1. UK-level 

At the UK-level, the top 1% and top 5 % Gi* methods emphasized the importance of a variety of 

areas across the UK (Fig. 13). However, the area of hotspots was small and their distribution 

reflected the location of the larger shag colonies. For example, top 1% Gi* hotspots were identified 

around Foula and the Isle of May in Scotland as well as the Isles of Scilly and the Farne Islands in 

England. The areas identified by statistically significant Gi* scores or maximum curvature covered 

larger areas, but were still restricted to coastal areas close to larger breeding colonies. Unlike the 

other species examined, results for shags are harder to visualise at the UK-scale, reflecting their 

highly localised foraging behaviour. 

Hotspots identified by loess-based maximum curvature encompassed the largest area 

(Table 7) and were most similar to the 90% UD of UK shags (J = 0.38). Defining hotspots as those 

cells within the top 1% or top 5% of Gi* scores gave smaller areas than hotspots defined on the 

basis of statistical testing (Table 7). When defining hotspots as the top 1% of Gi* scores the area 

identified was most similar to the 55% UD of UK shags (J = 0.12). Similarly, when using the top 

5% of Gi* scores the area identified was most similar to the 75% UD of UK shags (J = 0.12). 

Finally, when defining hotspots on the basis of statistical significant Gi* scores the areas identified 

was most similar to the 85% UD of UK shags (J = 0.21).  The larger areas identified by maximum 

curvature or statistically significant Gi* scores contained high numbers of birds (> 60% of the at 

sea population), but even the smallest area, defined using the top 1% of Gi* scores, was expected 

to contain >15% of the at sea population. 

3.4.2. SPA-level  
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In contrast to the other species examined, merging the outputs of SPA-level analyses resulted in 

smaller hotspots than performing a single UK-wide analysis and led to a concomitant reduction in 

the number of birds captured (Table 7). Such declines may be due to the relatively low number of 

colony SPAs across the UK in which shags are a designated feature (n = 11) and how they are 

arranged in space. For example, when merging the SPA-level hotspots at a UK scale, the 

importance of Scottish coastal waters is emphasized reflecting the distribution of designated shag 

SPA colonies, which are currently all found in Scotland (although shags will be a qualifying feature 

of the proposed Isles of Scilly SPA). 

Hotspots based on the top 1% of Gi* scores provided hotspots with the smallest area (Fig. 

14). The areas of hotspots based on the top 5% Gi* were generally smaller than those based upon 

statistically significant Gi* scores across SPA colonies. However, this difference in area was not 

always large and in one instance hotspots based on the top 5% Gi* scores identified larger areas 

than based on statistically significant Gi* values. As with the other species, areas delineated by 

maximum curvature provided the largest hotspot area for every single SPA colony, as well as the 

largest area when all SPA hotspots were merged onto a single map. When using statistically 

significant Gi* values to determine hotspots the % of the analysis field contained within identified 

hotspots had a median of 9 % across SPA colonies (range: 4 % - 11 %). Similarly, if using 

maximum curvature the % area contained within identified hotspots had a median of 28 % (range: 

21 % - 35 %) across SPAs.  The % of the at sea population contained within a given hotspot 

boundary at any given time varied between colonies and between methods (Fig. 15). In general, 

areas defined by maximum curvature ensured that a large percentage of the at sea population was 

covered (median = 78 %, range: 69 % - 80 %). At the other extreme, areas defined by the top 1% 
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of Gi* scores gave the lowest % coverage of the at sea population, although always included more 

than 1% of the at sea population (median = 12 %, range: 8 % - 25 %).  

Placing buffers around SPA colonies on the basis of foraging range estimates taken from 

Thaxter et al (2012) resulted in boundaries covering large areas. Boundaries created around 

colonies using the maximum observed foraging range covered areas that were larger even than 

those identified using maximum curvature at either the UK-level or SPA-level. The spatial 

similarity between different foraging range buffers and the most similar hotspot method is listed 

in Table 8. 
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Fig. 13. Maps displaying hotspots identified at the UK-scale for shags using a) Getis-Ord hotspot analysis with a neighbourhood size of d = 4 km 

based on FPT analysis b) and maximum curvature. UK EEZ also displayed.  

 

(a) (b) 
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Table 7. Summary of the area and percentage of shags contained within different hotspots identified at the UK-scale. Hotspots were identified either by performing 

a single UK-level analysis or by conducting hotspot analysis at SPAs in which shags were listed as a feature and then merging the outputs from each SPA into a 

single map (SPA-level hotspots merged).   UK analysis field comprises all cells within the UK EEZ and within the 95% home range of at least one UK colony (see 

Fig. 4).  The % of at sea population within the hotspot refers to the UK and Ireland populations. % change between UK-level and SPA-level values calculated as 

((V2 – V1) / V1) × 100. V1 = UK-level value, V2 =   SPA-level value. For Gi* hotspot data presented d = 4 km.

Analysis Area of hotspots 

identified 

Hotspot area 

as % of UK 

analysis field 

% of at sea 

population 

within hotspot 

 Area of hotspots identified Hotspot area 

as % of UK 

analysis field 

% of  at sea 

population 

within hotspot 

% change UK-level vs. merged 

SPA-level hotspots 

UK-level     SPA-level hotspots merged    

Top 1% Gi* 

hotspot 

458 km2 1% 20.35 %  36 km2 0.078% 4.10% Area: 92 % decrease 

No. Birds: 80% decrease 

Top 5% Gi* 

hotspot 

2, 288 km2 5% 44.39%  176 km2 0.38% 11.20% Area: 92 % decrease 

No. Birds: 75 % decrease 

Statistically 

significant 

Gi* hotspot 

6, 235 km2 13.51% 68.24%  706 km2 1.53% 19.94% Area: 89 % decrease 

No. Birds: 71 % decrease 

Maximum 

curvature 

10, 201 km2 22.11% 85.41%  999 km2 2.16% 23.93% Area: 90 % decrease 

No. Birds: 72 % decrease 
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Fig. 14. Maps displaying hotspots identified at the SPA-level for two example shag SPA: a) Foula SPA and 

b) Forth Islands SPA. c) Map displaying hotpots for all shag SPA colonies throughout the UK. d) Map 

displaying shag foraging ranges taken from Thaxter et al. (2012), note no mean-max + 1 SD was reported 

for this species. For Gi* hotspots d = 4 km. 

 

  

(b) 

(c) 
(d) 

(a) 
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Fig. 15. Box and whisker plots showing a) area and b) % of SPA at sea population within hotspots 

identified using maximum curvature and Getis-Ord analysis at each SPA colony across the UK in 

which shags were listed as a feature. Box plots show the distribution of hotspot area and % 

population included within a hotspot across each SPA colony included the analysis (n = 11 SPA 

colonies for shags). The solid line represents the median and the edges of the box show the upper 

and lower quartiles. Whiskers extend to the highest and lowest data extremes excluding outliers.  

 

 

 

 

 

 

(a) (b) 



61 
 

Table 8. The areas and % at sea population (UK and Republic of Ireland) contained within 

boundaries around UK shag SPA colonies based upon foraging range (Fig. 14d). Foraging range 

data from Thaxter et al. (2012). Note for shags Thaxter et al. (2012) does not report a value for 

Mean-max foraging range + 1 standard deviation. Table also identifies which hotspot method (Fig. 

14c) each foraging radius method shares the greatest similarity with. 

 

 

 

 

 

 

 

  

Foraging Radius Area within boundary % of at sea 

population 

Which hotspot most similar 

to 

Mean foraging range 2, 059 km2 22 % Max. Curv. hotspot, J = 0.41 

Mean-Maximum foraging range 8, 601 km2 27 % Max. Curv. hotspot, J = 0.11 

Mean-Maximum foraging range + 1 SD NA NA NA 

Maximum foraging range 11, 229 km2 27 % Max. Curv, hotspot, J = 0.09 
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4. Discussion 

The current report demonstrates how GPS tracking data, processed via species distribution models 

(Wakefield et al. 2017), can be used to map seabird hotspots using previously established 

techniques (Kober et al. 2010, O’Brien et al. 2012). Key features of this are approach are that 1) 

species distribution modelling and, hence, hotspot mapping takes into account species-habitat 

relationships; 2) predictive modelling allows estimation of seabird distributions and the 

identification of potential hotspots even from colonies in which birds were not tracked and 3) 

hotspot mapping can be performed across a range of spatial scales (e.g. SPA-level or UK-level) 

depending on one’s focus. Each of these features will assist in efforts to identify important at sea 

areas. For example, information on species-habitat relationships has proven important when 

designing protected areas (Hooker et al. 1999, Hyrenbach et al. 2000; Wilson et al. 2014); 

including the use of both static and/or persistent oceanographic features to define MPA boundaries 

(Louzao et al. 2006, Embling et al. 2013). Conditioning predicted seabird distributions on 

environmental variables to derive seabird hotspots also represents an improvement to the existing 

technique of drawing buffers around colonies in relation to foraging range and assuming birds are 

distributed uniformly within this buffer (Thaxter et al. 2012, Eastham 2014). Similarly, predicting 

usage in unsampled regions allows for hotspot mapping to be conducted at broad spatial scales. In 

addition, the ability to map seabird distributions and hotspots at local-scales permits the 

identification of important marine areas for seabirds already subject to various forms of protection 

(e.g. those birds originating from within designated breeding colony SPAs).  

4.1. General performance of maximum curvature and Getis-Ord analysis 

Across all species, maximum curvature consistently identified the largest hotspots and covered a 

greater percentage of the at sea population than any of the Getis-Ord methods, regardless of the 
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scale of the analysis (UK- or SPA-level). Likewise, hotspots defined using the top 1% of Gi* 

scores consistently provided hotspots with the smallest areas and population coverage. Hotspots 

based on the top 1% or top 5% of Gi* scores tended to emphasize inshore areas close to the largest 

colonies. In contrast, the larger areas identified by statistically significant Gi* scores or maximum 

curvature often extended further offshore. Maximum curvature also produced hotspots with more 

complex boundaries than the simpler shapes produced by Gi* hotspots. This behaviour arises 

because Getis-Ord analysis involves local smoothing whereas maximum curvature is conducted 

on a purely cell-by-cell basis. From a pragmatic perspective simpler boundaries may often be 

preferred when designing MPAs (Perrow et al. 2015), although the ubiquity of GPS tracking 

technology and remote sensing data may make defining complex and even dynamic boundaries 

increasingly feasible (Hooker et al. 2011). 

At the UK-scale, the areas identified by the different hotspots methods were relatively 

large. For example, the combined area covered by UK SPAs3 with marine components is currently 

19, 449 km2 with the largest single SPA (Outer Thames Estuary) covering 3, 922 km2 (data source:  

http://jncc.defra.gov.uk/page-1409 - SPAs with marine components, date accessed 01/08/2018, 

last updated 12/12/2017). In comparison, the UK-level top 1% Gi* hotspot for kittiwakes covered 

5, 852 km2 in total and the corresponding maximum curvature boundary covered 157, 802 km2 

(Table 1). Similar results were observed in the remaining three species, with identified hotspots 

typically exceeding the size of the largest SPAs currently designated and often exceeding the area 

covered by all current marine UK SPAs (particularly if using maximum curvature). At the 

individual SPA-level, the size of identified hotspots was smaller than at the UK-level, as expected, 

                                                
3 Proposed SPA sites (pSPA) are afforded the same level of protection as when fully classified, thus the 
area covered by the combined SPA and pSPA suites will exceed this value. 
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but still frequently exceeded the size of existing individual marine SPAs. Nevertheless, the SPA-

level approach demonstrates how hotspot mapping can be applied at more local-scales to identify 

important areas for specific colonies or colony aggregations. For kittiwakes, guillemots and 

razorbills merging the outputs of individual SPA-level hotspots onto a single UK-wide map 

resulted in larger areas being covered than when performing a single, UK-level hotspot analysis. 

However, despite covering a larger area, merged SPA-level hotspots were less efficient in terms 

of protecting as many birds as possible in the smallest possible area. In shags, merging the outputs 

of SPA-level hotspot analyses resulted in smaller hotspots than conducting a single UK-level 

analysis with a concomitant decrease in the number of birds captured.  Across species, merging 

SPA-level outputs at the UK-scale also resulted in a distribution of hotspots that perforce reflected 

the location of SPA colonies. Consequently, areas in which no SPAs are designated may be under-

represented at the UK-level if one were to focus solely upon SPA-level outputs. The differences 

in area covered between UK-level hotspot analysis and merged SPA-level outputs across species 

may be due to both the number of designated SPAs and their locations. For example, in shags the 

lower number of currently designated SPAs means that even when merging SPA-level outputs the 

total area covered is less than that covered by the single UK-level analysis. Moreover, a suite of 

SPAs that is regularly spread throughout the UK with non-overlapping hotspot boundaries is 

expected to cover a greater area than a similarly sized suite of SPAs that are clustered closer 

together with many overlapping hotspot boundaries.  

Although maximum curvature has previously been used to help identify and design seabird 

SPAs in the UK (O’ Brien et al. 2012) it may not always represent the most suitable method. For 

example, Kober et al. (2012) trialled maximum curvature on Poisson-kriged ESAS transect data 

but concluded that it selected areas so large that it was inappropriate for identifying important 
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seabird hotspots (the example given was for gannets). In the current study, as well as covering the 

largest areas, maximum curvature hotspots were most similar to the 80% - 90% UD of the different 

species, suggesting they cover the majority of the home range. Thus, the same issues identified by 

Kober et al. (2012) arise when applying maximum curvature to seabird distribution maps based 

upon telemetry data collected for the four species in our study during late incubation / early chick 

rearing. However for shags, although maximum curvature hotspots were most similar to the 90% 

UD, the absolute area encompassed was small relative to the other species. Therefore, the 

suitability of maximum curvature may rest partly on the degree to which a species aggregates while 

at sea and may work better for some species than others.  Using exponential models to identify the 

point of maximum curvature (as per O’Brien et al. 2012) occasionally produced multiple maxima, 

necessitating the use of Loess smoothing (Wakefield et al. 2017). Thus, it is recommended that 

maximum curvature be estimated using Loess smoothing in the future alongside the exponential 

modelling approach outlined by O’ Brien et al. (2012). 

Previously Getis-Ord analysis has been used to assist in the design of potential UK SPAs 

by delineating hotspots as polygons that encompass the top x% of calculated Gi* scores. However, 

the threshold value of x% chosen influences both the size of hotspots identified and how many 

seabirds are contained therein. In turn, this will influence whether the areas identified hold 

numbers in excess of the thresholds set out in the UK SPA selection guidelines. Kober et al. (2010) 

trialled the use of the top 1% and top 5% and ultimately decided upon the top 1% as a suitable 

means for the identification of potential seabird SPAs (Kober et al. 2012). It should also be borne 

in mind that there is no correspondence between Getis-Ord thresholds and numerical population 

thresholds. That is, the top 1% Getis-Ord hotspot is not guaranteed to contain 1% of the at-sea 

population.  
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In our analysis, the location of the top 1% Gi* hotspots was typically centred around the 

largest breeding colonies, reflecting the fact that the largest density of birds is found close to such 

colonies. When basing density estimates on tracking data from breeding birds (particularly during 

the early chick rearing phase) the importance of areas close to the colony may be emphasized to a 

greater degree than when using other data sources which may include non-breeders (e.g. transect 

data, but see Sansom et al. 2018) or tracking non-breeders whose foraging ranges are less 

constrained by the need to provision young.  Similarly, as the distribution of birds often shifts 

during the breeding cycle, distribution maps from the early chick rearing period may not reflect 

behaviour throughout the whole breeding season. 

Using statistically significant Gi* scores to delineate hotspots has not previously been 

reported for seabirds, although the approach is used in other fields (Ord & Getis 1995, Harris et 

al. 2017). Using this approach we identified hotspots that were typically larger than those identified 

using the top 5% Gi* method and smaller than maximum curvature hotspots. It should also be 

noted that there is not necessarily a close correspondence between statistical significance and the 

top x% of Gi* scores. For example, a completely random spatial pattern will still produce Gi* 

scores in which it is possible to define a top 1% even though no statistically significant hotspots 

would be identified. As with maximum curvature, the area of hotspots identified using statistical 

significance may mean this approach is deemed unsuitable for SPA designation for more widely 

dispersed species. However, both maximum curvature and statistically significant Gi* hotspots 

may be suitable for more aggregated species and could also be used to identify important areas in 

which broader marine stewardship measures would best complement an existing MPA network 

(Roberts et al. 2003). 
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For each species and hotspot method, we identified the % UD contour that was most similar 

to each UK-level hotspot using the Jaccard Index of similarity. Identified hotspots often showed a 

relatively high degree of similarity to utilisation distributions for kittiwakes, guillemots and 

razorbills. In contrast, Getis-Ord hotspots showed much lower similarity with UDs in shags. One 

potential reason for this is that the spatial smoothing introduced by Getis-Ord analysis does not 

reflect the clumped and often highly localized nature of shag distributions (Bogdanova et al. 2014). 

Maximum curvature, which does not involve spatial smoothing, resulted in hotspots that were 

more similar to estimated UDs in shags, but even in this case similarity (0.38) was much lower 

than the corresponding similarity indices observed between maximum curvature hotspots and 

utilisation distributions in the other three species. It remains unclear why the results observed in 

shags differ from the three other species in this manner. One potential explanation is that the spatial 

scale (the interaction between extent and resolution, sensu Goodchild 2001) of our analyses differs 

between the species considered. Specifically, due to relatively limited foraging range of shags 

hotspots defined using maximum curvature or Getis-Ord analysis tend to be coarser or blockier 

than the underlying utilisation distributions resulting in relatively low similarity even when high 

density areas are successfully identified. 

In comparison with maximum curvature and Getis-Ord analysis, the foraging radius 

approach tended to identify larger areas than either method but was less efficient in terms of 

protecting as much of a seabird population as possible in the smallest possible area. One drawback 

of the foraging radius is approach is that the distribution of birds is assumed to be symmetric 

around a given colony. However, in reality the distribution of birds departing from a colony is 

likely to be asymmetric as foraging trips may be targeted towards specific foraging areas or away 

from competitors from neighbouring colonies (Wakefield et al. 2013). A simple foraging radius 
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approach also does not take into account that seabird density is expected to decline with distance 

from the colony. Consequently, extending buffers to maximum foraging range or mean-maximum 

foraging range necessarily means including large areas of space towards the fringes of a species 

foraging distribution (Soanes et al. 2016) in which the expected distribution of seabirds is low. 

Soanes et al. (2016) demonstrates that the foraging radius approach can be refined by conditioning 

calculated foraging radii on key environmental variables such as water depth (see also Grecian et 

al. 2012). The species distribution models of Wakefield et al. (2017) represent a logical extension 

of this approach. 

4.2. Sensitivity of maximum curvature and Getis-Ord analysis to analysis field and 

neighbourhood size 

Both maximum curvature and Getis-Ord analysis were sensitive to how the analysis field was 

defined, which subsequently influenced the area of hotspots identified (Webb et al. 2009, Wang et 

al. 2014). For example, setting the analysis field as all cells within a colony’s 95% home range 

resulted in hotspots of a different size (though in a similar location) than if analysis field was 

defined using a maximum foraging range buffer.  One further caveat to using the top x% of Getis-

Ord scores to designate hotspots is that, by design, the hotspots identified will cover x% of the 

analysis field, a point also made by Kober et al. (2012). Therefore, Gi* percentage thresholds are 

not closely linked to population-based thresholds, but are more akin to area-based thresholds and 

will therefore be highly sensitive to how the analysis field is defined. Previous work has tended to 

limit hotspot analyses to those grid cells in which the density of birds exceeds zero (O’Brien et al. 

2012, Lawson et al. 2016) and/ or focus upon specific administrative regions (Kober et al. 2010). 

Here, we used the 95% home range to help define our survey field (along with the EEZ 

administrative region). The advantages of using this approach over using grid cells in which 
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density > 0 are that 1) the 95% home range represents a standard concept throughout ecology (Kie 

et al. 2010); and 2) Computationally such an approach is relatively efficient as it excludes large 

regions of low density beyond the 95% home range without impacting on results (Kranstauber et 

al. 2017). Ultimately, the choice of how to define analysis field may depend on both the nature of 

the data collected and the focus of a particular piece of work. However, given its importance, 

particularly when using Gi* % thresholds, we suggest the analysis field should be explicitly stated 

and that hotspots should be interpreted as hotspots within a given analysis field (e.g. hotspots 

within the 95% home range).  

In addition to analysis field, Getis-Ord analysis requires that local neighbourhood size, d, 

be defined prior to running an analysis. Larger values of d involve calculating local Gi* scores 

over larger neighbourhoods and result in a greater degree of smoothing. Mis-specification of 

neighbourhood size runs the risk of under- or over-smoothing the underlying patterns in the data. 

In general, over-smoothing seems to be a more serious problem as when we set neighbourhood 

values at low levels the resulting hotspots still covered high density areas and were similar to 

estimated UDs (Appendix A6, Fig. A3). However, setting neighbourhood values at the highest 

levels resulted in hotspots that bore little resemblance to the underlying data (Fig. A3). At present, 

there are a variety of ways to define neighbourhood size (Haining & Haining 2003). For instance, 

certain studies use spatial correlograms/ variograms to define d (Kamdem et al. 2012, Mathur 

2015), whereas others have chosen neighbourhood sizes that ensure each cell has a certain number 

of neighbours (Varga et al. 2015) or used Queens-case contiguity (Harris et al. 2017). Here, we 

used spatial variograms constructed from seabird density maps to identify the point at which spatial 

auto-correlation broke down to set d (as used in Kober et al. 2010, albeit a generic value was 

chosen across all species). In addition, we performed FPT analysis on raw tracking data to identify 
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the average scale of area-restricted search (Fauchauld & Tveraa 2003) across colonies for each 

species to set d. Results using both methods are presented and were broadly similar (Appendix 

A8), but ultimately we preferred the FPT-based approach for setting d. One reason for preferring 

the FPT-based approach is that spatial variograms did not always reach an asymptote or identified 

multiple peaks in spatial auto-correlation at different distances. Such a problem may arise due to 

patchiness or underlying trends in our response variable (Dale 1999, Crawley 2012) and suggests 

variograms did not always perform optimally. Similar problems were also reported for certain 

species in Kober et al. (2010). Alternatively, FPT analysis provided a quick way to estimate d and 

is more interpretable from an ecological perspective as the spatial-scale at which individuals forage 

(Hamer et al. 2009). In addition, the use of FPT analysis to identify local neighbourhood size has 

parallels with recently developed protocols to identify Important Bird Areas (IBA) from tracking 

data in which FPT analysis is used to identify species-specific smoothing parameters for kernel 

density estimation (Lascelles et al. 2016). Regardless of how d is defined, it is important that the 

value of d is reported in order to interpret the results of Getis-Ord analysis. 

4.3. Temporal persistence of hotspots 

To examine whether identified hotspot locations regularly held important numbers of birds Kober 

et al. (2010, 2012) classified hotspots based on the top 1% Gi* as regularly occurring if: 1) a 

hotspot was present during at least three years and 2) was hotspot found in at least 2/3 years for 

which sufficient data existed to test for its presence. The importance of temporal persistence of 

identified hotspots when trying to design seabird MPAs has also been raised elsewhere (Santora 

& Sydeman 2015). Recently developed methods also allow for Getis-Ord analyses to be performed 

incorporating both space and time when identifying hotspots (ESRI 2016). However, the species 

distribution models provided by Wakefield et al. (2017) provide distribution estimates that are 
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averaged across the years of the study. Thus, it is not possible to ascertain the temporal variability 

in hotspot location across years.  Such a study is feasible, but would require a longer-term tracking 

dataset than currently available. For example, the ESAS dataset used by Kober et al. (2010) 

comprised 25 years of data, compared to the five years of tracking data used in Wakefield et al. 

(2017). 

The current Wakefield et al. (2017) pools data across years as running separate species 

distribution model on a year-by-year basis would require more tracking data per year to ensure 

results are representative. Consequently, it is unclear whether the hotspots we identify here are 

consistent across years. However, many of the key explanatory variables within the models 

developed by Wakefield et al. (2017) were time-invariant (e.g. distance from coast, sediment type). 

Previous work has demonstrated that temperate, neritic seabirds often forage in consistent 

locations within and across years (Woo et al. 2008, Wakefield et al. 2015) suggesting that the time-

averaged environmental covariates used by Wakefield et al. (2017) may be reasonable proxies for 

prey distributions. As foraging range often varies across years in seabirds (Bogdanova et al. 2014) 

the strength of the decline in habitat usage with distance from the colony may also vary. In 

Wakefield et al. (2017) the influence of colony distance is averaged across the years of the study. 

Averaging across variables may average across some of the between year variation seen in foraging 

range and environmental conditions, however the species distribution models of Wakefield et al. 

(2017) may perform less well if species undergo a systematic shift in their foraging ranges in the 

future (Weimerskirch et al. 2012). However, the general finding that the density of breeding birds 

is greatest in close vicinity to the largest colonies during the breeding season also reflects a general 

feature of central-place foragers (Dean et al. 2015, Briscoe et al. 2018) and comparison of high 

use areas identified from recent seabird tracking data versus at-sea transect datasets collected over 
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a longer temporal period have shown that agreement between them is greatest closest to the 

colonies (Sansom et al. 2018). Thus, the factors determining the marine distribution of breeding 

seabirds in Britain appear sufficiently consistent across time to permit reliable estimation of area 

usage from biotelemetry, environmental covariates, and central‐place foraging theory (Wakefield 

et al. 2017). 

4.4. Representativeness of tracking data 

It should be borne in mind that the species distribution of Wakefield et al. (2017) were 

based on birds tracked during late incubation and the early chick rearing period. Thus, the 

distribution maps and the hotspots analyses presented here only represent the distribution of birds 

during this period of the annual cycle. Moreover, the behaviour and distribution of non-breeders 

and immature birds may also differ from patterns seen in breeding birds.  

In addition, the species distribution models of Wakefield et al. (2017) did not distinguish 

between different behaviours whilst birds were at sea. Therefore, the hotspots identified in the 

current report are based upon commuting and loafing behaviour as well as foraging behaviour. As 

a consequence, the importance (in terms of foraging) of areas close to the colony may be 

upweighted as birds may spend a significant amount of time rafting close to the colony or 

commuting through such areas (Carter et al. 2016) even if these areas are not key foraging sites. 

To identify hotspots purely based on foraging behaviour species distribution models can be based 

solely on locations classified as foraging (Wilson et al. 2014; Cleasby et al. 2015), which may 

result in stronger associations between habitat and distribution (Wakefield et al. 2009) as well as 

allowing identification of areas that are particularly at risk from activities that disproportionately 

impact on foraging birds. At present, the RSPB is utilising data collected using Temperature-Depth 
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Recorders (TDR) fitted to guillemots, razorbills and shags to identify diving locations for each of 

these species in order to construct foraging distribution models. When completed these models 

could be used to create distribution maps based purely on foraging locations and compared with 

the species distributions from Wakefield et al. (2017) in which all behaviours were used. 

When conducting a tracking study one of the key concerns is to ensure that adequate 

numbers of birds are tracked for long enough to obtain accurate estimates of population-level 

distributions. In terms of raw tracking data, Soanes et al. (2013) suggested large numbers of birds 

(n > 100 if only one trip per bird used; n ~ 20 – 30 if four trips per bird used) would need to be 

tracked in order to accurately predict home range area. However, the sampling regime required to 

obtain accurate calculations of the geographic location and layout (shape) of the home range as 

well as the utilisation distribution underpinning such estimates was not investigated. In order to 

assess whether tracking data are representative and allow inferences to be drawn about the spatial 

use patterns of a population Lascelles et al. (2016) provide a method for assessing the 

representativeness of tracking data based upon the overlap of UD contours. Lascelles et al. (2016) 

then used this approach to help identify important bird areas (IBA). An advantage of this method 

is the shape and location of home ranges are considered when assessing representativeness. Using 

this approach, we found that for the majority of colonies our tracking data exceeded the 70% 

representativeness threshold used by Lascelles et al. (2016) (Appendix, A9). Note that 

representativeness in this context refers to our ability to accurately reflect the distribution of the 

sampled population, i.e birds that were tracked during late incubation / early chick rearing at 

specific sites and during specific years. Consequently, it does not reflect the general 

representativeness of the dataset to assess derived foraging distributions for breeding birds 

elsewhere or at other points in the breeding cycle.  
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In the current study, a further consideration is that enough birds are sampled from across 

enough colonies to increase the power of species distribution models When fitting species 

distribution models, Wakefield et al. (2017) assessed model performance using a cross-validation 

procedure in which the results from each tracked colony in turn were excluded and the overlap 

between observed utilisation distributions and those based on model predictions for each colony 

was calculated. Colony-based measures of overlap were then averaged across all colonies, but 

weighted by the number of birds tracked per colony, to ensure that more emphasis was given to 

results from colonies in which more tracking data was available and hence more representative. 

Species distribution models fitted to data collected in one area may also predict usage poorly in 

another as habitat availability changes.  To address this, the species distribution models of 

Wakefield et al. (2017) were fitted as generalized functional responses (GFR) in which the 

response of birds to environmental covariates was conditioned on their regional means. 

Generalized functional response (GFR) models can interpolate usage to unsampled sites more 

accurately than conventional habitat selection models, but require that usage is sampled under a 

range of availability regimes allowing the response to environmental covariates to be conditioned 

on regional averages. Therefore, colonies in which small numbers of birds were tagged were still 

included in species distribution models to provide information on habitat selection across as 

diverse a range of environmental condition as possible.  

To assess the uncertainty of model estimates, Wakefield et al. (2017) plotted maps that 

showed the coefficient of variation of model predictions across the UK. In general, these maps 

showed that model uncertainty was greater in regions were the density of birds was predicted to 

be low. In contrast, model uncertainty was lower in high density regions close to breeding colonies, 

which are the areas that hotspot methods select (Appendix A9). Uncertainty arising from 



75 
 

uncertainty in model coefficients was also low with hotspots identified using simulated density 

surfaces based on model predictions consistently identifying the same areas as hotspots (Appendix, 

A10). 

Sansom et al. (2018) show that  the overlap in high use areas identified by modelled 

tracking and transect data increases as the percentile threshold defining high use decreases from 

the 99th to the 50th percentile. Putting this into context here, our results show that the top 1% Getis-

Ord hotspots show the greatest similarity with the 15-20% UD in kittiwakes, guillemots and 

razorbills and the 55% UD in shags,  roughly equivalent to the 80-85th percentile or 45th percentile 

of usage respectively. At these percentile thresholds, there was roughly 40-60% overlap in the 

areas identified as high use between Wakefield et al. (2017) and distributions based on transect 

data (Sansom et al. 2018), suggesting good agreement despite the multiple differences between the 

source datasets. Further work could include a more formal comparison of our hotspots with those 

identified from other data and /or further independent data could be collected to corroborate the 

importance of the hotspots as done previously for some proposed SPAs (Cook et al. 2015, Perrow 

et al. 2016). 

4.5. Hierarchical hotspot mapping at different spatial scales 

The ability to perform hotspot analyses at different spatial scales permits a hierarchical approach 

to identifying priority areas for conservation (Bailey & Thompson 2009). At the broadest scale, 

UK-wide analysis provides information on the location of the most important UK-hotspots. UK 

hotspots will reflect important areas used by UK seabird colonies regardless of whether birds 

originate from an SPA or not.  
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As birds from SPAs are subject to the strictest form of protection, identifying heavily used 

areas at sea by birds from those particular colonies is important for effective conservation 

(Lascelles et al. 2016). To achieve this, the hotspot mapping at the finer spatial scales presented 

here provides an improvement over the foraging radius approach. Firstly, hotspot maps based upon 

species distribution modelling will better reflect patterns of habitat usage. Secondly, SDMs 

provide density estimates across a two-dimensional surface upon which hotspot mapping is then 

based. In contrast, foraging range buffers typically assume seabirds are uniformly distributed in 

all directions around a colony and at all distances from it out to the limit of the defined buffer. 

Neither of these assumptions is likely ever to be true. As well as providing information on the 

areas birds from current colony SPAs use, hotspot mapping based on SDMs can also be used 

prospectively to examine the distribution of birds from proposed colony SPAs.  

More generally, combining maps of identified hotspots or population UDs with other 

sources of marine data such as existing MPA boundaries and anthropogenic impacts will also help 

identify areas of high conservation priority, including within current MPAs that may not have 

originally been designated for the species in question (Bailey & Thompson 2009). By combining 

population UDs or hotspot maps that identify high density regions with sensitivity mapping we 

can target regions where management of threats would have the greatest impact on a species or 

colony (Bradbury et al. 2014; Wilson 2016; Bradbury et al. 2017). 

4.6. Overview and additional approaches 

An overview of the different hotspots approaches used in the current report is presented in Table 

9. In terms of pros and cons, maximum curvature provides a relatively simple mathematical 

method for delineating potential hotspots. However, one has to choose a suitable method to 
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determine when the point of maximum curvature is reached (e.g. exponential growth models 

versus Loess smoothing). Moreover, how one defines the analysis field has a direct impact on the 

size of the area covered by the resulting maximum curvature boundaries. Typically, the maximum 

curvature areas identified are designed to protect as much of the population as possible in the 

smallest possible area, but typically cover large areas and can be relatively complex shapes. 

 When conducting Getis-Ord analysis one has to define two parameters carefully: the 

analysis field (as with maximum curvature) and the local neighbourhood size. Because Gi* scores 

for a focal cell are calculated over a local neighbourhood spatial correlation is incorporated to 

some extent. Unlike maximum curvature, an isolated focal cell in which a high density of birds 

was predicted may not be identified as a hotspot if predicted densities were low elsewhere in the 

local neighbourhood of the focal cell.  On the other hand, one risk when performing Getis-Ord 

analysis is to set the neighbourhood size as too big, resulting in large-scale spatial smoothing that 

can obscure underlying patterns in the data (Appendix A6). This may be a particular concern when 

using Getis-Ord analysis on species with highly localized ranges or species that form very loose 

aggregations. One also needs to decide how to use Gi* scores to select potential hotspots. Treating 

Gi* scores as z-scores allows one to base hotspot identification on the basis of statistical 

significance. Hotspots defined on this basis tend to be relatively large, though smaller than those 

identified using maximum curvature.  

 Using the top 1% or top 5% Gi* scores to identify hotspots results in the smallest areas 

being selected. However, it should be borne in mind that the size of the hotspots selected will be 

directly proportional to the area of the analysis field used. In most cases the top 1% or 5% of Gi* 

scores will select cells in which there are high densities of individuals, however these percentage 
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thresholds are not related to statistical significance and in certain circumstances may identify cells 

as hotspots when statistical significance testing would not do so.  

Finally, the hotspot approaches trialled here represent the methods by which marine SPAs 

in the UK have currently been identified and proposed (Kober et al. 2010, O’Brien et al. 2012) and 

subsequently been classified e.g. Outer Thames Estuary SPA, Liverpool Bay/Bae Lerpwl SPA and 

Irish Sea Front SPA. Furthermore, the use of SDMs applied to seabird tracking datasets has 

previously used successfully to identify and classify several other marine SPAs in UK waters e.g. 

Northumberland Marine SPA, Dungeness, Romney Marsh & Rye Bay SPA, and Morecambe Bay 

& Duddon Estuary SPA. A review of the sufficiency of the UK marine SPA network is currently 

underway by the Statutory Nature Conservation Bodies (Stroud et al. 2016, JNCC, pers. com.) and 

the work presented here has the potential to inform that work and the process of filling any gaps 

identified.  Though beyond the scope of the current report, there are also a number of specialised 

decision support tools that have been developed to aid the planning of conservation networks. 

Typically, such approaches use optimization algorithms to design a network of protected sites that 

meets some predefined target whilst also minimising cost (Moilanen et al. 2005, Ball et al. 2009). 

Thus, such programs consider more than just the density of birds in an area. However, they 

typically require greater user input, including the development of pre-defined conservation targets 

and the construction of cost surfaces. Nevertheless, in certain circumstances they may be a useful 

additional approach. 
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5. Conclusions 

Using a combination of cutting edge GPS tracking technology and predictive species distribution 

modelling, Wakefield et al. (2017) demonstrated it is possible to generate UK-wide distributions 

for guillemot, razorbill, kittiwake and shag based on a sample of tracking data (Wakefield et al. 

2017). This followed on from previous work which focussed on applying SDMs to visually-

tracked tern species, generating colony-specific distributions for both tracked and untracked 

colonies (Wilson et al. 2014). Such an approach is growing in popularity throughout ecology and 

is likely to become increasingly prevalent in the future (Hazen et al. 2017, Reynolds et al. 2017, 

Wilson et al. 2017). Here, we show how such distribution mapping can be used to identify potential 

seabird hotspots using previously established techniques for informing the identification of marine 

SPAs (Kober et al. 2010, O’Brien et al. 2012). Such hotspots have the advantage that they are 

conditioned upon species-habitat relationships, can be computed at a variety of spatial scales and 

do not require that birds from a given colony were tracked. As such, they represent a considerable 

advance over the use of simple buffers based upon maximum foraging range (Soanes et al. 2016). 

Ultimately, such work will contribute to our overall understanding of factors affecting seabird 

distributions at sea. The outputs from this work form a useful and valuable resource given the 

increasing political, environmental, moral and legal imperatives to identify protected areas at sea 

and improve the management of our marine environment. 
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Table 9.  Summary of different hotspot methods used in current report.

Method Outline Details Delineation Spatial 

Smoothing? 

Important 

parameters 

Performance 

Maximum 

Curvature 

Outlines area that 

best balances 

protecting as much 

as the population as 

possible in the most 

efficient (smallest) 

area 

 

 

Identify point of 

maximum curvature 

using exponential growth 

models or Loess 

smoothing. 

Cells ordered by 

density and included 

within maximum 

curvature boundary up 

until the point of 

maximum curvature 

reached 

No, analysis done 

on purely grid cell 

by grid cell basis 

Size of analysis 

field partly 

determines the size 

of resulting hotspots 

Selects large areas typically encompassing 

majority of home range and high % of at sea 

population. Selected boundaries relatively 

complex. 

 

Getis-Ord 

Analysis 

 

Identify areas in 

which clusters of 

density are distinct 

from patterns in the 

surrounding 

landscape. 

 

Getis-Ord scores (Gi*) 

calculated for each grid 

cell in analysis by 

comparing density at the 

local level to overall 

global density 

 

 

 

 

 

a) Select cells 

within top x% 

of Gi* scores 

 

OR 

 

b) Select cells in 

which Gi* 

score exceeds 

a critical 

significance 

threshold 

 

Yes, local Gi* 

scores calculated on 

basis of density 

values in defined 

local 

neighbourhood 

rather than just a 

single, focal grid 

cell. 

 

Size of analysis 

field partly 

determines the size 

of resulting hotspots  

 

Extent of local 

neighbourhood size, 

d, determines degree 

of smoothing when 

calculating Gi* 

scores 

 

Select top x% of Gi* scores: 

Selects smallest areas for every species. Total 

area of hotspots defined equal to x% of 

analysis field. Selected boundaries relatively 

simple.    

 

Select cells in which Gi* score exceeds 

significance threshold: Selects relatively large 

areas typically exceeding boundaries of 50% 

home range (core range). Selected boundaries 

relatively simple. Sensitive to definition of 

analysis field and local neighbourhood size, 

but less so than top 1% or top 5% methods. 

 

Foraging 

radius 

buffers 

 

Draw buffers around 

colonies in relation 

to recorded foraging 

ranges 

 

Foraging ranges typically 

estimated from tracking 

data. 

 

Cells within foraging 

range buffer selected 

 

No, focal cell 

selected if falls 

within buffer 

 

Foraging range can 

be specified as max 

recorded range, 

mean-max foraging 

range or mean 

foraging range. 

 

Typically selects large areas, but less efficient 

in terms of protecting most birds in smallest 

area. Between-individual and between-colony 

variation in foraging range means that values 

taken from one study may not always reflect 

behaviour at another colony.  
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A1. Details on when birds were tracked as part of Wakefield et al. (2017) 

The species distributions models of Wakefield et al. (2017) were based upon tracking data 

collected during the late incubation and early chick rearing period. Thus, the predictions derived 

by Wakefield et al. (2017) show the distribution of breeding birds during this period. The 

distribution of breeding birds at other points of the breeding season or the distribution of non-

breeders is not incorporated. Details on the dates at which birds were tracked are given in Table 

A1 below. 

 

Table A1. Table showing the dates at which birds were tracked at each tracked colony across the 

years of the study. The earliest trip records the date at which recording of the first track commenced 

and latest trip records the date at which the last track was recorded. Dates are split by breeding 

colony and year of study. Colony ID: ANN = Annet, BAR = Bardsey, BEM = Bempton, BOB = 

Bullers of Buchan, CAW = Cape Wrath, COP = Copinsay, COQ = Coquet, CSY = Colonsay, FAI 

= Fair Isle, FAN = Flannans, FIL = Filey, FOW = Fowlsheugh, GTS = Great Saltee, IOM = Isle 

of May, LAM = Lambay, LUN = Lunga, MKS = Muckle Skerry, PUF = Puffin Island, RAT = 

Rathlin, SAB = St Abbs, SAM = Samson, SHI = Shiants, SKO = Skomer, STA = St Agnes, STM 

= St Martins, SUM = Sumburgh Head,  SUS = Sule Skerry, SWO = Swona, WIN = Whinnyfold. 

Year Colony Earliest Trip Latest Trip 

2010 

2011 

2012 

ANN 

ANN 

ANN 

29/5/2010 

12/5/2011 

14/5/2012 

29/5/2010 

3/6/2011 

15/5/2012 

2011 BAR 15/5/2011 11/7/2011 

2010 

2011 

2012 

2013 

2014 

BEM 

BEM 

BEM 

BEM 

BEM 

8/6/2010 

2/6/2011 

28/6/2012 

5/6/2013 

24/6/2014 

3/7/2010 

22/6/2011 

4/7/2012 

3/7/2013 

30/6/2014 

2012 BOB 4/6/2012 9/6/2012 

2014 CAW 29/6/2014 1/7/2014 

2010 

2011 

2012 

2014 

COP 

COP 

COP 

COP 

30/5/2010 

6/6/2011 

18/5/2012 

28/5/2014 

30/6/2010 

5/7/2011 

20/7/2012 

10/7/2014 
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2011 

2012 

COQ 

COQ 

14/6/2011 

23/5/2012 

16/6/2011 

6/7/2012 

2010 

2011 

2012 

2013 

2014 

CSY 

CSY 

CSY 

CSY 

CSY 

20/5/2010 

3/5/2011 

2/5/2012 

8/5/2013 

28/5/2014 

12/7/2010 

23/7/2011 

21/7/2012 

20/7/2013 

20/7/2014 

2010 

2011 

2012 

2013 

2014 

FAI 

FAI 

FAI 

FAI 

FAI 

6/7/2010 

18/5/2011 

19/5/2012 

25/5/2013 

12/5/2014 

10/7/2010 

23/6/2011 

2/7/2012 

21/6/2013 

10/7/2014 

2014 FAN 22/6/2014 24/6/2014 

2013 

2014 

FIL 

FIL 

6/6/2013 

24/6/2014 

4/7/2013 

28/6/2014 

2012 FOW 19/6/2012 25/6/2012 

2013 GTS 29/4/2013 10/5/2013 

2012 

2013 

2014 

IOM 

IOM 

IOM 

29/5/2012 

25/6/2013 

19/6/2014 

20/6/2012 

14/7/2013 

7/7/2014 

2010 

2011 

LAM 

LAM 

6/5/2010 

31/5/2011 

19/7/2010 

8/7/2011 

2014 LUN 5/6/2014 11/6/2014 

2010 

2011 

2012 

2013 

2014 

MKS 

MKS 

MKS 

MKS 

MKS 

5/6/2010 

1/6/2011 

21/5/2012 

16/6/2013 

9/6/2014 

23/6/2010 

2/7/2011 

5/7/2012 

14/7/2013 

4/7/2014 

2010 

2011 

2012 

2013 

PUF 

PUF 

PUF 

PUF 

10/5/2010 

12/5/2011 

2/5/2012 

3/6/2013 

14/7/2010 

11/7/2011 

10/7/2012 

20/7/2013 

2013 RAT 3/6/2014 24/7/2014 

2012 SAB 16/5/2012 1/6/2012 

2010 

2011 

2012 

SAM 

SAM 

SAM 

18/5/2010 

18/5/2011 

27/5/2012 

23/5/2010 

30/5/2011 

28/5/2012 

2014 SHI 27/5/2014 29/5/2014 

2011 

2012 

SKO 

SKO 

2/6/2011 

1/6/2012 

25/6/2011 

4/6/2012 

2011 

2012 

STA 

STA 

23/6/2011 

26/6/2012 

24/6/2011 

27/6/2012 

2010 

2011 

2012 

STM 

STM 

STM 

22/6/2010 

16/6/2011 

18/6/2012 

18/7/2010 

29/6/2011 

19/6/2012 
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2014 SUM 25/6/2014 25/6/2014 

2011 SUS 12/7/2011 13/7/2011 

2010 

2011 

2012 

2013 

2014 

SWO 

SWO 

SWO 

SWO 

SWO 

18/6/2010 

8/6/2011 

6/6/2012 

26/6/2013 

26/6/2014 

21/6/2010 

16/6/2011 

10/6/2012 

28/6/2013 

27/6/2014 

2012 WIN 6/6/2012 8/7/2012 
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A2. Brief description of the modelling approach in Wakefield et al. (2017) 

The approach used in Wakefield et al. (2017) involved modelling the intensity of tracking locations 

at a given point in space by using numerical quadrature methods to fit an Inhomogeneous Poisson 

Process (IPP) model. The response variable for the IPP was created by scoring all point locations 

in which tracking was observed as 1 and then creating a set of quadrature or dummy points on a 

regular grid across the study area and scoring them as 0. Weights were then assigned to quadrature 

points in relation to how many points (quadrature and data points) occurred within the same grid 

cell as a given point. Thus, the response variable is proportional to the expected density of tracking 

locations and the IPP model is equivalent to a weighted Poisson model. Separate models were run 

for each species, but within a species data was provided by multiple colonies. Birds from different 

colonies are likely to experience different environmental conditions/ habitat availability and may 

respond differently to habitat covariates as a consequence. To address this, the expected values of 

environmental covariates at a given colony were added as predictors to the models; expected 

covariate values were defined as the mean value of a covariate over the waters accessible from a 

given colony. The use of expected values partially implements the GFR model described in 

Matthiopoulos et al. (2011), which can predict usage in unsampled sites more accurately than 

conventional habitat selection models. To assess the performance of the fitted models, the 

predicted distribution of birds from tracked colonies was compared with the observed distribution 

of birds calculated using raw tracking data. A high degree of overlap (based on Bhattacharyya’s 

Affinity, (Bhattacharyya 1943)) indicated good model fit. Covariates that improved the overlap 

between predicted and observed distribution of birds were retained as part of the best fitting model, 

but covariates that had no effect or decreased overlap were removed. 

 

A3. Variation in the proportion of time spent at sea across colonies 

Currently, the outputs from Wakefield et al. (2017) do not account for differences in time spent at 

sea among different colonies. To examine the extent of variation in time at sea between tracked 

colonies, we modelled the proportion of time birds spent at sea per day for each species using 

binomial mixed effects models in which the response variable was specified as a two-column 

matrix of successes (number of fixes at sea per day) and failures (number of fixes on land per day) 
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using the R package MCMCglmm (Hadfield 2010). Only days in which birds were tracked for the 

full 24 hours were included in the analysis. As random effects we included individual ID and 

colony ID to account for between-individual and between-colony variation in the proportion of 

time spent at sea. Colony ID was included as a random effect because we were specifically 

interested in estimating the degree of between-colony variation in proportion of time at sea across 

colonies. As a fixed effect predictor we included log10 colony size and latitude. Overall, we found 

that neither colony size or latitude associated with the proportion of time spent at sea per day in 

any species (Table A1). However, there was evidence of between-individual variation and 

between-colony variation in the proportion of time spent at sea per day across species. 

 

Table A2. Analysis of proportion of time spent at sea across colonies for each of the four species 

included in the technical report. Point estimates are given along with Bayesian 95% credible 

intervals (95% CRI). Variance components are reported as between-individual or between colony 

standard deviations (σ). 

Species Intercept 

(95% CRI) 

β: log10 Colony 

Size 

(95% CRI) 

β: Latitude 

(95% CRI) 

σ Individual ID 

(95% CRI) 

σ Colony ID 

(95% CRI) 

n = individuals/ colonies 

Kittiwakes -0.55 

(-1.72 – 0.53) 

0.21 

(-0.17 – 0.62) 

0.09 

(-0.12 – 0.31) 

1.45 

(1.35 – 1.56) 

0.501 

(0.23 – 0.72) 

n = 424/ 20 

Guillemots - 0.059 

(- 1.35 – 1.34) 

0.029 

(-0.33 – 0.36) 

0.32 

(-0.13 – 0.76) 

1.27 

(1.21 – 1.34) 

0.42 

(0.14 – 0.65) 

n = 183/ 12 

Razorbills -0.16 

(-2.11 – 1.77) 

-0.11 

(-0.71 – 0.56) 

0.27 

(-0.18 – 0.71) 

1.54 

(1.47 – 1.61) 

0.82 

(0.44 – 1.17) 

n = 299/ 14 

Shags -0.15 

(-0.96 – 0.52) 

0.032 

(-0.37 – 0.36) 

0.14 

(-0.17 – 0.46) 

1.17 

(1.11 – 1.22) 

0.69 

(0.37 – 0.98) 

n = 243/ 14 
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A4. Calculating relative density and utilisation distributions over a set of selected colonies. 

Relative Density: 

The relative density of birds originating from a selected set of colonies was calculated as: 

𝑅𝐷𝑃,𝑖 = ∑ 𝑈𝐷𝑠,𝑥𝐴𝑙𝑙 𝑥 𝑁𝑠. 

Where RDP,i  represents the relative density surface for a defined population P for the ith species. 

The population in question is defined by a list of colonies, set x, over which to perform the 

operation. For example, at the UK-level, set x contains all Seabird 2000 sites that are located within 

the UK. Similarly, at the SPA-level set x contain all Seabird 2000 sites that are located within the 

boundaries of a specified SPA. UDs,x represents the UD for the sth colony for all colonies included 

within the set x. Ns represents the size of colony s and is calculated as two times the number of 

Apparently Occupied Nests (AON) recorded during the Seabird 2000 census for kittiwakes and 

shags or the number of individuals recorded for guillemots and razorbills. Note that we did not use 

a conversion of factor of 0.67 to convert he numbers of guillemots and razorbills into pairs (see 

main text). 

Utilisation Distribution: 

The utilisation distribution (UD) of a given population is calculated by normalizing the relative 

density estimates (described above) for said population to generate a probability distribution that 

sums to one. This is achieved as: 

𝑈𝐷𝑃,𝑖 =
∑ 𝑈𝐷𝑠,𝑥𝐴𝑙𝑙 𝑥 𝑁𝑠

∑ 𝑁𝑠
𝑁.  𝑆𝑖𝑡𝑒𝑠
𝑠=1

 

Where UDP,i represents the population-level UD P for the ith species and N. Sites denotes the 

total number of sites included within set x. Note that the numerator here is the same as the 

equation for relative density. 
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A5. Influence of analysis field on hotspot methods 

When performing either maximum curvature or Getis-Ord analysis how one specifies the analysis 

field can have a noticeable impact on the size of the subsequent hotspots identified. We provide 

an example of this by comparing hotspots identified at the Fowlsheugh SPA for black-legged 

kittiwakes and the Foula SPA for European shags. At Fowlsheugh both maximum curvature and 

Getis-Ord analysis were conducted by setting the analysis field as either the 95% home range (the 

approach used in the main technical report) or by drawing a maximum foraging radius around the 

colony (Fig. A1). At the Foula SPA a similar procedure was conducted for European shags (Fig. 

A2). Data on foraging range was taken from Thaxter et al. (2012). We took data from Thaxter et 

al. (2012) rather than our own tracking data as, in the absence of tracking data, these values are 

often used as the benchmark for identifying which areas colonies use (Eastham 2014). 

The size of identified hotspots reflects the size of the analysis field used.  At Fowlsheugh the 95% 

home range of kittiwakes was larger than the maximum foraging radius buffer resulting in larger 

hotspots being identified. Conversely, at Foula the 95% home range of shags was smaller than the 

maximum foraging radius buffer resulting in smaller hotspots. Differences between the size of 

95% home ranges and buffers based on maximum environmental variables, coastal geography and 

density dependence are taken into consideration when estimating colony-specific home ranges. In 

contrast, such considerations are not taken into account when using a point estimate of maximum 

foraging range. 
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Fig. A1. Plots showing the influence of changing the analysis field on hotspots identified for 

kittiwakes originating from within the Fowlsheugh SPA. a) Comparison of the area covered by 

two different analysis fields, 95% home range and maximum foraging range radius. b) Top 1% 

Getis-Ord hotspots using different analysis fields. c) Top 5% Getis-Ord hotspots using different 

analysis fields. d) Statistically significant Getis-Ord hotspots using different analysis fields. e) 

Maximum curvature hotspots using different analysis fields. 

 

 

 

  

a) 
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Fig. A2. Plots showing the influence of changing the analysis field on hotspots identified for shags 

originating from within the Foula SPA. a) Comparison of the two different analysis fields trialled 

95% home range and maximum foraging range radius. b) Top 1% Getis-Ord hotspots using 

different analysis fields. c) Top 5% Getis-Ord hotspots using different analysis fields. d) 

Statistically significant Getis-Ord hotspots using different analysis fields. e) Maximum curvature 

hotspots using different analysis fields. 

  

a) 
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A6. Influence of neighbourhood size on Getis-Ord analysis 

 When performing Getis-Ord analysis the choice of appropriate neighbourhood size plays a 

key role in determining the size and location of hotspots identified. Here, we examined how 

changing the neighbourhood size altered the Getis-Ord hotspots for kittiwakes nesting within the 

Flamborough and Bempton Cliffs SPA. For the current analysis the analysis field was defined as 

the 95% home range of birds originating from within the Flamborough and Bempton Cliffs  SPA 

and range of different neighbourhood sizes were trialled: d = 8 km, 10 km, 12 km, 15 km, 18 km, 

20 km, 23 km, 25 km, 30 km, 35 km, 40 km, 50 km and 60 km. Using these neighbourhood sizes 

Getis-Ord hotspots were defined using the top 1% and top 5% of Getis-Ord scores as well as on 

the basis of the statistical significance of Getis-Ord scores.  

 Plots (Fig. A3) show examples of the hotspots identified using different neighbourhood 

values over-laid with density estimates from the models of Wakefield et al. (2017). When using 

the top 1% or top 5% of Getis-Ord scores to delineate hotspots we found that using a small 

neighbourhood size (8 – 10 km) generally gave hotspots that showed a high degree of similarity 

(Jaccard similarity) to specific population UDs. In this case, top 1% Getis-Ord hotspots were most 

similar to the 20% UD and top 5% Getis-Ord hotspots were most similar to the 45% UD (Fig. A4). 

However, as neighbourhood size increased similarity between hotspots and UDs decreased and at 

the largest neighbourhood sizes (d = 50 – 60 km) hotspots bore very little resemblance to estimated 

UDs. Such a relationship can also be seen by plotting identified hotspots and over-laying estimated 

distribution data. When using statistical significance to delineate hotspots we found that as 

neighbourhood size increased the similarity between hotspots and estimated UDs decreased 

slightly, though not to the same extent as when using the top 1% or top 5% of Getis-Ord scores. 

In addition, as neighbourhood size was increased the hotspots identified became more similar to 

larger population-level UDs. For example, when neighbourhood size was set at 8 km statistically 

significant Gi* hotspots were most similar to the 60% UD, but when neighbourhood size was 60 

km hotspots were most similar to the 80% UD. In general, over-estimating neighbourhood size 

appears of greatest concern when conducting Getis-Ord analysis than specifying too small a 

neighbourhood. In particular, the top 1% or 5% methods of delineating hotspots appear particularly 

sensitive to over-estimation of neighbourhood size. In the current example neighbourhood sizes 

above 30 km appeared to give very poor results. Similar results were seen in other populations/ 
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species with larger neighbourhood sizes generating hotspots that did not resemble underlying 

distribution well, particularly when using the top 1% or top 5% of Getis-Ord scores to delineate 

hotspots. We note that the selection of large neighbourhood sizes was not supported by the use of 

either spatial variograms (maximum d across species = 16km) or FPT analysis (maximum d across 

species = 10km). 

 

Fig. A3. Maps showing estimated density of kittiwakes per km2 at sea originating from colonies 

within the Flamborough and Bempton Cliffs SPA over-laid with Getis-Ord hotspots calculated 

using different neighbourhood size values. 
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Fig. A4. Figures showing the Jaccard similarity between Getis-Ord hotspots calculated using 

different neighbourhood sizes, d, and % UDs for kittiwakes at the Flamborough and Bempton 

Cliffs SPA. a) Getis-Ord hotspots calculated using top 1% of Getis-Ord scores; similarity peaks at 

the 20% UD when using a small neighbourhood size, but peak similarity declines as 

neighbourhood size increases. b) Getis-Ord hotspots calculated using top 5% of Getis-Ord scores; 

similarity peaks at the 45% UD when using a small neighbourhood size, but peak similarity 

declines as neighbourhood size increases. c) Getis-Ord hotspots calculated using statistically 

significant Getis-Ord scores; similarity peaks at different values depending on neighbourhood size 

and declines as neighbourhood size increases. 

 

  a) 
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A7. Description of First-Passage Time 

The first passage time (FPT) is a parameter often used to describe the scale at which patterns occur 

in a movement trajectory and is frequently used to identify foraging areas in both terrestrial and 

marine systems (Battaile, Nordstrom, Liebsch, & Trites, 2015; Byrne & Chamberlain, 2012; 

Hamer et al., 2009; Le Corre, Dussault, & Côté, 2014). FPT is defined as the time required by the 

animals to pass through a circle of radius r centred on a given point within the trajectory. The mean 

first passage time scales proportionately to the square of the radius of the circle for an uncorrelated 

random walk (Johnson et al. 1992).    

Fauchald and Tverra (2003) proposed that, instead of computing the mean of FPT, one could 

calculate the variance of the log (FPT). Consider a trajectory composed of n points where each 

point is separated by a small given distance in space. Assume that each point is also associated 

with a circle of given radius, r. By measuring the time taken between entering and exiting this 

circle we get a measure of search effort/ time at each point along a trajectory. As mentioned above, 

increasing r will increase the time taken to cross the circle. However, this increase will be larger 

in areas with higher tortuosity and lower speed (associated with search effort) than areas in which 

an animal moves faster in more straight lines. Therefore, the relative variance in FPT for all points 

along a trajectory will increase as r increases. The variance in log (FPT) is given as Var [log (t) r], 

where t(r) is the time taken to cross a circle of given radius. When r increases beyond the spatial 

scale at which search effort occurs then the relative difference between t(r) between points within 

and outside of the area will decrease resulting in a decrease in the log (FPT) variance. Thus, 

whenever search effort is concentrated in a particular area we expect to find a peak in the log (FPT) 

variance, with r corresponding to the spatial scale of the intensively searched area. 

Using the adehabitatLT package in R (Calenge 2009), FPT values were calculated for each trip 

scales ranging from r = 2 km to 100 km at 1 km intervals for kittiwakes, guillemots and razorbills. 

For shags r ranged from r = 1 km to 50 km at 0.5 km intervals. The variance in FPT was calculated 

as a function of radius, and maxima in the log-transformed variance indicated the scale at which 

the bird interacted with the environment. This value was averaged across all trip within a species 

and taken to represent the scale at searching behaviour. Occasionally, FPT analysis identifies 

multiple maxima (peaks) in log (FPT) variance, which may occur when species exhibit hierarchical 

searching strategies (Hamer et al. 2009). When this occured we chose the value at which the 
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variance in log (FPT) first peaked as our measure of the scale of search effort provided that this 

peak was at least one third of the size of the largest peak in the variance of log (FPT). In most 

cases, the first peak in log (FPT) variance is the greatest. Moreover, choosing the first peak means 

that we focus on smaller scale foraging effort and because FPT is used to determine the 

neighbourhood size for Getis-Ord analysis it helps us avoid the risk of over-estimating 

neighbourhood size (see below). 

 

A8. Variogram versus FPT neighbourhood size 

Across species performing Getis-Ord analysis at the UK-level using either FPT analysis or spatial 

variograms to define neighbourhood size, d, resulted in broadly similar hotspots being identified. 

However, FPT-based analysis consistently identified smaller neighbourhood sizes than spatial 

variograms reflecting a lower level of smoothing. As a result, FPT based analysis was occasionally 

able to identity small hotspots at a few locations that were not highlighted when using a larger 

neighbourhood size. 

In kittiwakes, guillemots and razorbills the choice of neighbourhood size had most effect when 

defining hotspots as the top 1% of Getis-Ord scores. In contrast, the choice of neighbourhood size 

had less effect when hotspots were defined as the top 5% of Getis-Ord scores or on the basis of 

statistical significance. In shags, there was little evidence that the method used to define Gi* 

thresholds influenced the similarity of identified hotspots as neighbourhood size was changed. 

Table A2 shows the spatial similarity between Gi* hotspots identified using a neighbourhood size 

define by FPT analysis or spatial variograms. 

Our rationale for preferring FPT is that it has a common ecological interpretation as the spatial 

scale at which birds interact with their environment. Moreover, the fact that spatial variograms 

occasionally failed to reach an asymptote of identified multiple peaks in spatial auto-correlation 

suggested that they did not always fit the patterns seen in the data particularly well. Finally, 

because over-estimating the size of the local neighbourhood resulted in poor performance of Getis-

Ord analysis the smaller neighbourhood sizes derived from FPT analysis were judged more 

reliable. 
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Table A3. Table showing estimated similarity between Getis-Ord hotspots calculated using a 

neighbourhood size, d, estimated via FPT analysis or spatial variograms. 

Species Neighbourhood Size (d) 

comparison,  

FPT vs. variogram 

Getis-Ord method Jaccard Similarity 

Black-legged kittiwake 10 km vs. 15 km Top 1% Gi* J = 0.71 

  Top 5% Gi* J = 0.90 

  Stat. Sig. Gi* J = 0.90 

Common guillemot 9 km vs. 16 km Top 1% Gi* J = 0.54 

  Top 5% Gi* J = 0.75 

  Stat. Sig. Gi* J = 0.82 

Razorbill  7 km vs. 11 km Top 1% Gi* J = 0.67 

  Top 5% Gi* J = 0.82 

  Stat. Sig. Gi* J = 0.77 

European Shag  4 km vs. 5 km Top 1% Gi* J = 0.77 

  Top 5% Gi* J = 0.76 

  Stat. Sig. Gi* J = 0.79 
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Fig. A5. Maps displaying Getis-Ord hotspots identified at the UK-level for a) black-legged kittiwakes using 

using a neighbourhood size of d = 15 km; b) common guillemots using a neighbourhood size of 16 km; c) 

razorbills using a neighbourhood size of 11 km; d) European shags using a neighbourhood size of 5 km. 

UK EEZ also displayed.  
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A9. Representativeness of tracking data 

To estimate the representativeness of our tracking data we adopted the approach introduced by 

Lascelles et al. (2016) to identify seabird Important Bird Areas (IBAs). The approach examines 

how estimated core area distribution (50% UD) changes as sample size (number of tracks) 

increases. For each tracked colony individual foraging trips were assigned a unique identifier and 

randomly selected iteratively for a sequence of different sample sizes (analysis done at the trip-

level; the Lascelles et al. (2016) approach includes a screening for potential pseudo-replication). 

Sample sizes chosen ranged from 1 to the maximum number of birds tracked at a given colony. 

For each sample size, a 50% UD was calculated from the sampled data using the average ARS 

scale to define the smoothing parameter used when constructing UDs. The proportion of 

unsampled data that fell within this 50% UD was then recorded as an inclusion value. 

Subsequently, a nonlinear regression was used to estimate the sample size needed for tracking data 

from a selected colony to be considered representative. The maximum inclusion value achieved 

by a given colony was then calculated as a percentage of the estimated asymptote value to provide 

a measure of the representativeness of tracking data. 

Lascelles et al. (2016) used a cut-off value of 70% representativeness when deciding whether 

tracking data was representative enough for further analysis. In most cases tracking data exceeded 

this 70% threshold value and, as expected, larger sample sizes gave more representative results 

(Fig. A6). Colonies that did not exceed this 70% threshold were still included in the habitat 

modelling carried out by Wakefield et al. (2017) as they still provide valuable information on 

species habitat preferences by sampling different regions. However, model selection was weighted 

towards colonies in which more birds were tracked and hence data more representative. 

As well as uncertainty in the raw tracking data itself there also remains some uncertainty in model 

results. To address this Wakefield et al. (2017) quantified spatial variation in model uncertainty 

using parametric resampling in order the calculate coefficient of variation (CV) of model 

estimates. Due to temporal and spatial auto-correlation present in tracking data model CVs should 

be treated as relative rather than absolute.  Overlaying identified hotspots with maps of model CV 

shows that hotspots are generally situated in areas in which the CV is low, indicating greater 

certainty in distribution estimates in such areas (Fig. A7). 
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Fig. A6. Plots showing the representativeness of tracking data at each colony against the number 

of birds tracked using the procedure of Lascelles et al. (2016) for (a) kittiwakes, (b) guillemots, (c) 

razorbills and (d) shags. Size of data points is proportional to log10 colony size, while tabs indicate 

the identity of each colony (denoted as a three letter code, see Table A1). Colony tabs colour coded, 

dark blue = Scotland, red = Wales, green = Ireland, orange = Scilly Isles, light blue = Yorkshire, 

gold = Northumberland. 
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d) European shags 
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Fig. A7. Left panels) Maps showing the CV of model estimates at the UK-scale together with UK-level 

hotspots identified for each species. Note that the UK-level hotspots for shags are difficult to see at this 

scale because they are relatively localised. Right panels) Boxplots showing the distribution of CV values 

from cells within different UK-level hotspots compared to CV values across the whole extent of the analysis 

field for each species. 
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A10. Model uncertainty in hotspot analysis 

The maps of CV in modelled predictions show how uncertainty in the fitted model (standard errors 

around fitted coefficients) can influence density estimates. To examine what effect such 

uncertainty had upon hotspot mapping we used the same parametric resampling approach that was 

used to generate CV maps to explore uncertainty in hotspot modelling. Each hotspot technique 

(Getis-Ord analysis and maximum curvature was run 100 times for 100 different density surfaces 

generated from modelled predictions. To assess the uncertainty in hotspot locations we defined 

hotspots in two different ways. In the strictest case, a cell was only classified as being a hotspot if 

that cell was identified as a hotspot in all 100 simulations. In the conservative case, a cell was 

classified as a hotspot if that cell was identified as a hotspot in at least one of the 100 simulations. 

Due to time constraints this analysis was only conducted in kittiwakes. Kittiwakes were chosen as 

they covered the largest areas in our study 

 Across all hotspot methods the difference in size between the strictest method for 

delineating hotspots and the most conservative was small. Identified hotspots showed a high-

degree of overlap and the difference in the area covered was < 5% in all cases. 
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Fig. A8. Uncertainty in hotspot location due to modelling uncertainty. The plots show hotspots 

identified using 100 simulated density surfaces predicted using the modelled outputs from 

Wakefield et al. (2017). In the strictest method of delineating a hotspot cells were classified as a 

hotspot if they were identified as a hotspot in all 100 simulations. In the conservative method, cells 

were classified as a hotspot if they were identified as a hotspot in at least one simulation. Hotspot 

areas showed high overlap across simulations and the difference in the area covered by hotspots 

using the strictest versus the conservative method was small. a) Hotspots calculated using the top 

1% Getis-Ord scores; difference in size of strict versus conservative hotspot = 5%. b) Hotspots 

calculated using the top 5% Getis-Ord scores; difference in size of strict versus conservative 

hotspot = 3%. c) Hotspots calculated using statistically significant Getis-Ord scores; difference in 

size of strict versus conservative hotspot = 2%. d) Hotspots calculated using maximum curvature; 

difference in size of strict versus conservative hotspot = 1.5%. 
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